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a b s t r a c t

In this paper we apply reaction–diffusion models to explore the relationship between the rate of
behavioural innovation and the level of cultural diversity.We investigate howboth independent invention
and the modification and refinement of established innovations impact on cultural dynamics and
diversity. Further, we analyse these relationships in the presence of biases in cultural learning and find
that the introduction of new variants typically increases cultural diversity substantially in the short term,
but may decrease long-term diversity. Independent invention generally supports higher levels of cultural
diversity than refinement. Repeated patterns of innovation through refinement generate characteristic
oscillating trends in diversity, with increasing trends towards greater average diversity observed for
medium but not low innovation rates. Conformity weakens the relationship between innovation and
diversity. The level of cultural diversity, and pattern of temporal dynamics, potentially provide clues as to
the underlying process, which can be used to interpret empirical data.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Recent decades have witnessed considerable interest in the
mathematical modelling of the dynamics of cultural change. A
number of researchers have adapted the methods of theoreti-
cal population genetics to study the dynamics of cultural change
through time, as well as the co-evolution of genes and culture
(Boyd and Richerson, 1985; Cavalli-Sforza and Feldman, 1981;
Feldman andCavalli-Sforza, 1976; Feldman and Laland, 1996;Hen-
rich andMcElreath, 2003; Richerson and Boyd, 2005; Enquist et al.,
2007). Such models include analysis of a variety of other forms
of cultural transmission (Boyd and Richerson, 1985; Cavalli-Sforza
and Feldman, 1981; Feldman and Cavalli-Sforza, 1976), application
of neutral genetic drift models to study the evolution of cultural
traits (Bentley et al., 2004), and of phylogenetic methods to recon-
struct the history of diverse cultural traits (Gray and Jordan, 2000;
Holden, 2002; Holden and Mace, 2003; O’Brien and Lyman, 2003).
While the mathematical modelling of culture is a rapidly

developing and highly productive discipline, one topic that has
received comparatively little attention is the relationship between
innovation and cultural diversity. Nor has this topic been addressed
by the diffusion research tradition (Rogers, 2003), which explores
how, why, and at what rate new ideas and technology spread
through cultures. This is paradoxical for two reasons: first, at least
since Boas,widely regarded as the father of American anthropology
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(e.g. Boas (1911)), understanding why people are different (i.e. the
causes of cultural diversity) has been recognized as one of the
major objectives of the social sciences. Second, it would be difficult
to find another topic in anthropology and archaeology that has
played as important a role as innovation in framing arguments
about why and how human behaviour changes (O’Brien, in press).
Nineteenth century ethnologists, such as Tylor (1871) and Morgan
(1877), viewed the production of novelties as the evolutionary
driver that propels cultures up a hierarchy of cultural complexity.
Innovation was equally important in the work of later cultural
evolutionists such as Steward (1955) and White (1959), who
regarded it as a key component that a group needs to meet the
challenges of its physical and social environment. American culture
historians of the twentieth century routinely looked to diffusion
and trade as a source of innovations, and hence of cultural change
and diversity (e.g. (Ford, 1969)). Even contemporary debates over
the legitimacy of cultural phylogenetics (e.g. Borgerhoff Mulder
et al. (2006)) hang in part on the extent to which cultural
diversity can be explained by divergent tradition, independent
invention, or the diffusion of innovation. This issue is also
central to attempts to comprehend the processes underlying the
human capacity for cumulative culture (Ghirlanda and Enquist,
2007). Accordingly, understanding of the relationship between
innovation and diversity would engender widespread interest.
To date, empirical analysis of this question using the archaeo-

logical or historical record has been hindered by the difficulty that
often only one or two different time periods are considered in a
given study, or the fact that the study is focused on the compari-
son of the temporal evolution of two variants (e.g. the replacement
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of horses by tractors in agriculture, (Mattingly, 1987)). Here we
develop a mathematical analysis of the relationship between in-
novation and diversity, hoping that this will provide a theoretical
framework thatwill encourage further empirical study. Indeed, our
analyses not only shed light on the processes of innovation and cul-
tural change, but also provide methods by which the mechanisms
of innovation can be inferred from the degree of diversity.1
Our study is designed to address the following issues. First,

while it may be intuitive to assume that innovation will generate
cultural diversity in the short term, it is far from clear that inno-
vation will lead to enhanced cultural diversity in the longer term,
or at equilibrium. In principle, technological innovations could
merely displace established technology, without increasing long-
term diversity. Accordingly, we ask under what circumstances in-
novation promotes cultural diversity. Second, we explore whether
there is a threshold rate of innovation that is necessary to support
the accumulation of cultural diversity. Third, while many innova-
tions can be characterized as refinement or modification of an es-
tablished variant (Basalla, 1988), other cases might be perceived
as entirely independent invention. The latter category include
serendipitous or accidental discoveries, for which X-rays, electro-
magnetism, ozone, photography, dynamite, the gramophone, vac-
cination, radioactivity, classical conditioning, and penicillin are all
examples (Simonton, 1995). We investigate whether these two al-
ternative forms of innovationmay impact differentially on cultural
diversity. Fourth, in the light of this analysis, we consider whether
itmight be possible to draw inferences about the innovationmech-
anism (independent invention versus refinement) on the basis of
the observed level of cultural diversity. Fifth, we explore how the
relationship between innovation and diversity will be affected by
biases in cultural transmission. Some forms of social learning (most
obviously, conformist transmission, where individuals preferen-
tially adopt the majority trait) may counteract any positive effect
of innovation on cultural diversity.
We apply reaction–diffusion models to investigate how both

independent invention and the modification and refinement of
established innovations affect cultural diversity, building on earlier
studies of language competition (e.g. Kandler and Steele (2008)
and Pinasco and Romanelli (2006)), cultural hitchhiking (Ackland
et al., 2007), and prestige bias (Ihara, 2008), that exploit similar
methods. Themodels comprise reaction, diffusion and competition
components, which collectively are well-suited to capture aspects
of the spread of an innovation in a finite population. Using
established population ecology metrics, we propose a number
of distinct measures of cultural diversity (see Appendix B),
illustrating how each is affected by the innovation rate. We
begin by assuming that social learning is unbiased (acquired in
proportion to the frequency of the variants in the population), but
go on to investigate the impact of both frequency-independent and
frequency-dependent cultural transmission biases.

2. The model

A detailed mathematical description of the model can be found
in Appendix A; here we present an accessible summary. We
develop and analyse a model that describes the spread dynamics
of n competing (mutually exclusive) variants of a specific cultural
traitwithin a population. Such variantsmight represent alternative
beneficial subsistence techniques, technologies, religious beliefs,

1 Currently there is no well established method for measuring cultural trait
diversity, nor even a well characterized notion of a cultural trait. It is apparent
that the specific definitions and methods deployed may influence the absolute
level of diversity observed. We nonetheless assume the existence of a framework
regarding how the cultural variants are defined and measured, and do not expect
such definitional factors to affect our qualitative conclusions.
or languages. Obviously cumulative increases in ‘‘diversity’’ may
occur in cases where innovations do not compete, and our
conclusions regarding the relationship between innovation and
diversity are restricted to competing cultural variants. Using a
continuous differential equation based approach, we determine
the temporal and spatial changes in the frequencies of n variants,
denoted by u1, u2, . . . , un. Individuals can adopt only one variant
at a time. (We have found that analysis of situations where
individuals are allowed to adopt more than one variant at the
same time leads to similar results.) We assume a constant and
homogeneous environment, which we model through temporally
and spatially constant model parameters. Although the model
possesses a deterministic nature and therefore ignores drastic and
rare events, its results can be regarded as null hypotheses. Failures
in the predictions of the model can be understood as evidences of
the significant impact of rare changes on the competition dynamic
(Ackland et al., 2007).2
Variant frequency change is determined by two main

components—diffusion and growth. The diffusion component
models the spread of an innovation from a specific location in
space as a random walk, with density-dependent mixing, equiv-
alent to the random spread of an innovation through direct con-
tact between individuals. The propensities of variants to spread
out in space vary and are described by the ‘diffusion coefficients’
(denoted by di). The reaction term describes the increase in fre-
quency of each variant amongst naive individuals (individuals that
have not yet adopted the trait), according to a specific ‘growth’
parameter, where a conventional logistic growth is assumed, as
well as representing the effects of competition. Initially we as-
sume that unbiased social learning (or asocial adoption) underpins
the adoption process, but later we consider various kinds of cul-
tural transmission bias. Variants differ in their growth propensi-
ties, denoted by ai, depending on the benefits each conveys to its
adopters. In addition, growth is influenced by individuals that have
already adopted a variant switching to an alternative variant. Vari-
ants hinder each other in growth, with the degree of hindrance de-
termined by variant frequencies and ‘switch coefficients’, denoted
cij, specifying the proportion of adopters of variant i that switch
to adopt variant j. The more beneficial a variant, the less likely are
its adopters to switch and at the same time the more likely it is
the preferred target of switching, which restricts the growth of
competing variants. Variants need not be present at the beginning
(t = 0) of the analysis, and can be invented at later time points tk.
The time between two inventions is modelled by an exponential
distributed variable τ ∼ exp(λ), with innovation rate λ.
We consider two classes of innovation, modification of an

existing variant and independent invention, and represent these in
the model through choice of appropriate values of the intrinsic
growth rate ai and competition coefficient cij parameters.Whilewe
assume that modification can result in both an improvement and a
worsening of the existing variant, here we focus on improvement.
Improvement implies that the newly invented variant offers
adopters benefits over the original, in which case we assume
it will be preferred to the original, and that individuals who
have already adopted other variants will be more likely switch
to the improved variant than the original. These expectations
can be implemented by (1) assuming a higher intrinsic growth
coefficient for the improved variant over the original, and
(2) imposing the constraints cIO < cOI and cKO < cKI , where cIO
indicates how much the original variant hinders the improved
variant in growth, cOI describes the reverse relation, cKI describes
the competition between the improved variant and the other

2 Obviously, such failings can also result from inadequate assumptions that fail
to capture the underlying basic processes.



A. Kandler, K.N. Laland / Theoretical Population Biology 76 (2009) 59–67 61
a b

c d

Fig. 1. (a) and (c) Representative frequency time course for six competing variants, with (b) and (d) showing the corresponding diversity measures. (a) and (b) represent
modifications that may or may not be improvements (and also to some degree reflects the behaviour of independent inventions), while (c) and (d) represent the case where
all newly invented variants are improvements on pre-existing variants. The first variant is invented at t = 0 and variant k is invented at random time points tk =

∑k
i=1 τi

with τi ∼ exp(0.01). The innovation rate λ = 0.01 leads on average to six innovations during the period [0, 600].
present variants, and cKO the competition between the original
variant and the remaining variants.3 As a result of the described
procedure the invented variants can be ordered hierarchically in
terms of the benefits they offer to their adopters. In the case
of independent invention, we assume that a variant is invented
without knowledge of established variants, and represent this
through allotting parameter values that are randomly selected
relative to the variants present in the population.
In our analyses, we consider both the stable equilibria, that is,

the long-term ratios of the competing variants, and the temporal
dynamics in the approach to equilibria. We show that the stable
equilibria are coexistence states, here denoted by (u∗1, u

∗

2, . . . , u
∗
n).

Coexistence means that all variants are present in the population,
although, depending on the specific circumstances, they may
have a negligibly small frequency, and in a stochastic system
might plausibly be lost. Interestingly, due to the involved spatial

3 Note that we assume that variants that offer benefits to the user aremore likely
to be retained than less effective variants. While we acknowledge the possibility
that superficially attractive variants could be adopted, but then subsequently be
found to be inadequate and rejected, here we prefer to concentrate on the more
general case.
diffusion process the obtained equilibria are spatially uniform,4
which means the variant’s frequency distribution is constant over
the entire space. Therefore we focus on the description of the
competition dynamic over time, rather than space. However, the
use of a spatially explicit model greatly enhances the biological
and cultural plausibility of our analysis: independent inventions
are not all devised in the same place, but rather are distributed
and diffuse through space, while competition between variants
depends on local (rather than global) variant frequencies.
Quantitative measures of cultural diversity were developed

through borrowing related biodiversity, species richness and
evenness measures from biology (see Appendix B). We draw on
four established metrics: (i) the Simpson and (ii) Shannon indices,
which incorporate variant richness and variant evenness in the
evaluation of diversity, (iii) the Shannon evenness index, which
considers variant evenness only, and (iv) a diversity measure
introduced by Bulla (1994) that is designed to be sensitive to the
presence of rare variants.

4 Spatially dependent equilibria can be obtained by, for instance, assuming a
heterogeneous environment where the level of benefit of the variants varies in
space or the domain shows a certain non-convex pattern (e.g. a connected island
domain).
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3. Results

3.1. Innovation and short-term dynamics

Fig. 1 illustrates the change in frequencies over time, and
the corresponding impact on diversity, of six competing variants,
where variants 2–6 are each a modification of an already existing
variant.5 In order to illustrate the long-term effects of innovation
it is convenient to distinguish between two time periods—an
innovation period [0, tinv] during which innovation occurs and
a stabilization period [tinv, tstab] where no innovation occurs and
the stable long-term frequencies are reached. After stabilization,
variant frequencies settle down to the stable coexistence state
(u∗1, u

∗

2, . . . , u
∗

6), although it is apparent from Fig. 1 that some
variants have a negligible small frequency at equilibrium. In (a)
and (b), not all modifications are improvements. Here, variant 4
is the most beneficial variant and establishes itself at the highest
frequency at equilibrium. However, the time course of variant 2’s
frequency illustrates that other variants can increase to equivalent
frequencies in the short term. With unbiased social learning the
exact times tk and order of the innovations’ inception have no
influence on the stable equilibrium, although they do change the
course of the competition dynamics.
Fig. 1b shows how the spread of the innovations affects

cultural diversity, as measured by our four indices. Reassuringly,
all indices produce the same general patterns over time, although
their absolute values and micro-dynamics vary considerably.
It is immediately apparent that, contrary to the widespread
expectation that innovation will inevitably increase diversity, in
the short term, cultural diversity does not always increase with
innovation, and all diversity measures show marked decreases at
some juncture. Indeed, some diversity indices (Shannon evenness
index, Bulla index) typically decrease with innovation.
Prior to the invention of the second variant (t1) all diversity

measures are zero, since only one variant is present, and at
this juncture an immediate increase in all indices is observable.
However, from invention points t2, . . . , t5 the indices behave
differently. The Shannon evenness index and the Bulla index
evaluate only the evenness of the frequency distribution and
so typically decrease at every invention point t2, . . . , t5 since
evenness usually decreases by introducing a new variant at low
frequency. In contrast, the other indices show an increase in
diversity at invention points, because they incorporate the number
of variants, as well as evenness. The indices reach their maxima
when variant 2 and variant 4, the most advantageous variants
in the sample, have similar frequencies, a pattern that appears
general, since this constellation represents the most even state of
the frequency distribution. However, from this point all diversity
measures decrease, as the dominant variant gradually displaces
its competitors. The presence of a dominant variant, by which we
mean an innovation that conveys a significantly higher benefit
to adopters than other variants, almost always reduces cultural
diversity in the longer term.
In the short term, the temporal dynamics for independent

invention resembles that for randomly generated modification
(Fig. 1a and b). Indeed, since Fig. 1a depicts a situation in which
newly invented variants can be both superior and inferior to
existing variants, the principal difference between this kind of
innovation through modification and independent invention is

5 As stated before, our model leads to spatially constant equilibria. Therefore the
following figures illustrate the time course of the competition dynamic at a fixed
spatial point and for the sake of simplification we call the times tk invention times
of the kth variant whereas in the spatially explicit formulation of the model they
are the arrival times of variant k at location x.
merely the magnitude of the differences in parameter values
between variants. It is only when innovation throughmodification
repeatedly generates improvements that we witness qualitative
differences in the patterns of diversity generated by the two types
of innovation.
Fig. 1c and d illustrate the situation where all newly invented

variants are improvements on pre-existing variants. Here the
dynamics exhibit predictable patterns that are highly dependent
on the innovation rate. The impact of innovation on long-term
diversity is variable across indices, with those measures solely
dependent on evenness less affected by new variants in the longer
term than other measures. We have established that provided
there is sufficient average time between innovations for the most
beneficial variants to reach high frequency, a cycling pattern of
diversity will emerge. The local maxima of the diversity indices
are reached when the two most beneficial variants have similar
frequencies (dashed lines).
Fig. 1d illustrates two primary processes that underpin

the relationship between innovation and diversity. Discounting
evenness measures, the introduction of new variants typically
increases diversity substantially in the short term, as the new fit
variant increases in frequency; however, once the most beneficial
variant becomes dominant, the periods following inventions
typically witness reductions in diversity, as the fittest variant
out-competes the alternatives. If the time between innovations
is comparatively short (a high innovation rate), the dynamics are
dominated by the first of these processes, and diversity increases
steadily over time. At the other extreme, long periods between
innovations (low innovation rate) allow the second process to
dominate, and we witness regular cycles in diversity, but with
no increase, or only modest increases, in long-term diversity.
Between these extremeswewitness cycling in diversity associated
with a saw-tooth-like increase in diversity with each innovation.
We propose that the detection of these characteristic patterns
of diversity change in the historical or archaeological record
may potentially allow researchers to draw inferences about both
the rate of innovation and the extent to which innovations are
refinements.

3.2. Innovation and long-term dynamics

We now consider the relationship between innovation rate
and cultural diversity at equilibrium. We assumed that the
time between two innovations is determined by an exponential
distributed variable τ ∼ exp(λ), where the innovation rate λ
models how frequent innovations occur. In our model set-up it
means that on average tinv/λ variants are invented during the
period [0, tinv]. Fig. 2a shows the relation between the average
level of cultural diversity and innovation rate λ where there is
improvement of an existing variant, and Fig. 2b where there is
independent invention. The average level is obtained by 10,000
simulations6 for every value of λ. In both caseswe obtain an almost
linear relationship: the higher the rate of innovation the higher
the cultural diversity. This result confirms the intuitive expectation
that an increase in the number of variants is associated with an
increase in cultural diversity, although the absolute magnitude
of the increase in diversity with innovation rate is frequently

6 The simulations are carried out as follows. In the case of modification, the rank
of every newly invented variant in the already existing order of variants is chosen
randomly (that means whether the new variant is an improvement or worsening
compared to every already existing variant is assigned at random),while the growth
and competition coefficients are determined accordingly to the above procedure.
In contrast, in the case of independent invention the growth and competition
coefficients are modelled by uniform distributed variables. However, importantly,
the possible parameter ranges in both cases are the same.
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Fig. 2. Relation between the average level of cultural diversity and innovation rate λ for (a) innovations through improvement, and (b) independent invention. For each
of 40 values of λ from 0.01 to 0.03, a random number of invented variants were selected, with randomly chosen degrees of advantageousness. Repeating this procedure,
and averaging over 10,000 runs, leads to an average level of cultural diversity for the chosen innovation rate. Similar results are obtained when the adoption rates ai and
competition terms cij are negatively correlated.
a b

Fig. 3. Frequency distributions of the Shannon index for innovation through modification (dashed lines) and independent invention (solid lines), (a) without conformity,
and (b) with strong conformity. We assume a situation where four variants are invented during a given time period. With strong conformity, independent invention favours
situations where different numbers of variants have similar frequencies.
surprisingly modest. A doubling of the innovation rate can be
associated with an increase in long-term cultural diversity of
approximately 6%–32%. Increases on the lower end of the scale
are obtained by evenness indices (Shannon evenness index, Bulla
index), while increases on the higher end are obtained by the
indices that also incorporate the number of variants present.
Independent invention typically generates greater diversity

than modification. Over 10,000 runs we observe a maximum error
margin of 4% (based on a 95% confidence level) for the four diversity
measures, whichmeans that the observed differences between the
two types of innovation cannot be attributed to random effects
of the Monte Carlo simulation method, and there is a genuine
difference in the typical level of diversity associated with the two
types of innovation. The higher diversity level associated with
independent invention results from the fact that if individuals
invent independently the chance of creating a variant that is
strongly dominant over all others is lower compared with the
situation of improvement, and as a result evenness and cultural
diversity increase. Furthermore, we find that the slopes of the
diversity measures are frequently steeper for modification than
for independent invention. For modified variants we often observe
for cases with few variants (indicated by small λ values) that the
most advantageous variant has a significant frequency advantage.
In contrast, situations with more variants are typically more
even because the chance of inventing two comparable beneficial
variants is increased. This effect is most apparent in the Shannon
evenness index; the more variants are invented the more even
becomes the distribution. Conversely, because of the reduced
likelihood of a dominant variant in situations of independent
invention we do not obtain the same slope.
These findings raise the question of whether it might be

possible to distinguish between the two different sources of
innovation, modification and independent invention, on the basis
of the observed level of cultural diversity. To explore this question
we assume a situation where four variants are invented during
a given time period. Our aim is to determine the probability
of obtaining a particular level of cultural diversity under the
assumptions of modification or independent invention.
Fig. 3a shows the frequency distributions of the Shannon index

of the equilibria (u∗1, u
∗

2, u
∗

3, u
∗

4) obtained by 10,000 simulations.
We can see that the two sources of innovation result in different
characteristic diversity distributions.While independent invention
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Fig. 4. Influence of conformity (expressed by the parameter p) on the spread dynamic of variants. (a) A single-variant system. (b) Two variants, where variant 1 is represented
by the solid lines and variant 2 by the dashed lines. Here the variants are equally favoured by transmission biases but variant 2 has a competitive advantage to variant 1
(c12 > c21). (c) Influence of direct and indirect transmission biases (expressed by the parameter b) on the spread dynamic of two variants (again, variant 1 is represented
by the solid lines, and variant 2 by the dashed lines). Conformity in the population is at a moderate level but variant 2 has a benefit advantage compared with variant 1
(c12 > c21). The black lines illustrate the situation where both variants are supported in the sameway by direct and indirect biases. Because of its benefit advantage variant 2
achieves a higher frequency than variant 1 at equilibrium. But if variant 1 is favoured by direct and indirect biases (other lines) then it can overcome its benefit disadvantage
and establish itself at a higher equilibrium frequency than variant 2. (d) Influence of strong conformity on the spread dynamic of six variants.
favours high-diversity situations where several invented variants
are evenly distributed, innovation through improvement leads to
a broader distribution of low and intermediate levels of diversity
where themost beneficial variant shows a high frequency. The 95%
limits of both distributions (where 5% of the probability mass is in
the inner tail) indicate that diversity values between 0 and 0.48
can reasonably be attributed to innovation through modification
whereas diversity values in the interval [0.72, 1] almost certainly
result from independent invention. Thus for most of the range
of values of this metric it should potentially be plausible to infer
the process underlying innovation with a 5% probability of error.
Fig. 3b illustrates the same situation but under the presence of a
conformist bias which will be discussed in the next section.

4. Social learning biases

We now model adoption behaviour in more detail by allowing
for cultural transmission biases that favour particular variants,
exploiting a general formulation devised by Henrich (2001) to
capture several transmission biases simultaneously. Here, the
adoption rate a is modelled by the function a = a(u) = (1− p)b+
p(u− cb) (Henrich, 2001) and analogously the switch rate c by the
function c = c(u) = [(1−p)d−p(u−cb)]+, where the operator [·]+

stands for the positive part to ensure that the direction of switching
is not changed. In both formulations we can clearly distinguish
between a constant and a frequency-dependent component. The
constant, or frequency-independent, components (1 − p)b and
(1 − p)d represent the collective influence of direct bias (the
selective copying of pre-existing variants found to be efficacious
by individual assessment) and indirect bias (the selective copying
of variants from individuals with specific qualities and attributes
deemed to make them fit models), with b and d reflecting the
population’s judgement of the advantageousness of the variant
given its intrinsic qualities, and those of its users. The frequency-
dependent component p(u − cb) represents the influence of a
conformist bias (individuals preferentially adopt the commonest
variant). If the variant’s frequency u is above a ‘commonness
threshold’ cb then the difference u − cB is positive and conformist
bias results in an increase in the adoption rate and a decrease in the
switch rate (adopters of a common variant are less likely to switch
their variant), while if a variant is rare then conformity will reduce
its adoption rate and increase its switch rate. The parameter p is a
measure of the relative strength of the frequency-dependent and
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frequency-independent components. Following Henrich (2001),
we assume p is small.7
Fig. 4a illustrates the effects of different degrees of conformity

on the spread dynamic of a single variant. Increasing conformity
(either by incrementing p or the ‘commonness threshold’, cb) pro-
duces a delay in the take off of the adoption curve and, at the ex-
treme, canhinder a variant fromspreading altogether (yellow line).
Fig. 4b illustrates the effects of conformity on the spread dynamic
of a two-variant system where in each of four cases (represented
by four colours) the dashed line is the more beneficial variant. A
moderate level of conformity leads to an enhancement of variant
2’s advantage because conformist bias favours the common vari-
ant (compare blue to red lines). But if the population’s propensity
for conformity is too large the dynamic is reversed (compare green
or yellow to red lines), and strong support of the common vari-
ants prevents the more advantageous but later-invented variant 2
from spreading. This implies that strong conformity can hinder cu-
mulative cultural evolution, resulting in a suboptimal equilibrium.
When conformity is operating, the order in which the innovations
occur and time between innovations play critical roles in deter-
mining which equilibrium will be reached. Fig. 4c illustrates the
influences of frequency-independent bias on the spread of two
variants. Where variant 1 is favoured by biases (blue and green
lines) it can overcome its competitive disadvantage and establish
itself at a higher equilibrium frequency than variant 2.
More generally, in an n-variant situation, low levels of con-

formity support the most beneficial variant, with its equilibrium
frequency increased compared with unbiased learning, and a cor-
responding reduction in cultural diversity. In the presence of
stronger conformist bias (Fig. 4d), less beneficial, and sometimes
beneficial, variants are prevented from spreading, as a result of
which cultural diversity decreases further. With high conformity,
only one variant, which need not be the most beneficial variant, is
present in the population. However, given the evidence in the his-
torical and archaeological record for cumulative cultural evolution,
we judge conformity of this magnitude to be implausible.
The effects of transmission biases hold for both innovation

through modification and independent invention. When we
consider the relationship between innovation rate and cultural
diversity at equilibrium in the presence of moderate conformity,
we again find that this relationship is both linear and positive. The
effect of the conformist bias is both to reduce the absolute levels
of diversity, and to increase the slopes of the diversity measures in
themodification situation. As stated above, for innovation through
modification evenness increases with the number of variants.
However, here conformity can have a greater impact on situations
with fewer variants, which is what leads to the larger slope of the
diversity measures. While previously we proposed that high levels
of cultural diversity may be indicative of independent invention
whereas low levels might imply innovation through modification,
in the presence of conformity this distinction is fuzzier. Fig. 3b
shows the frequency distributions across the full range of diversity
values for the Shannon index. Comparedwith the situationwithout
conformity (Fig. 3a), with conformity the peaks of the distributions
are now at the opposed ends of the diversity scale. Innovation
through improvementmost likely leads to situationswhere almost
only one variant is dominant in the population. In contrast, the
frequency distribution obtained by independent invention shows a
multiple peak pattern. This pattern is indicative of situationswhere
different numbers of dominant variants are supported.

7 We note that a high degree of conformity can even lead to a negative intrinsic
growth. The coefficient ai(ui) is interpreted as growth propensitywhich depends on
the benefits a variant conveys to its adopters. If there is a very strong conformist bias
acting in the population the conveyed benefit is largely determined by the variant’s
frequency. Individuals may even discard originally beneficial but rare variants.
However, our analysis suggests that strong conformity is
unlikely to be widespread in human culture. Boyd and Richerson
(1985), Richerson and Boyd (2005) and their collaborators
(e.g. Henrich and Boyd (1998), Henrich (2001), Henrich and
McElreath (2003),McElreath et al. (2005) andEfferson et al. (2007))
have consistently placed emphasis on conformist transmission
as an important mechanism of cultural evolution, stressing the
evidence for conformity found in the social psychology literature
(Ash, 1952; Coultas, 2004), and emphasizing the theoretical finding
that conformity is favoured by selection over a broad range of
conditions (Henrich and Boyd, 1998). However, this emphasis
has recently received criticism from other cultural evolutionist
theoreticians, whose analysis reveals that conformity hinders
cumulative cultural evolution, and as a consequence would be
selected against in many circumstances (Eriksson et al., 2007).
These differences have yet to be resolved, but relate in part to
different assumptions about patterns of environmental variation,
and the cumulative or non-cumulative nature of cultural change.
Our finding that a strong conformist bias can hinder the spread
of a beneficial variant can be viewed as supporting Eriksson
et al.’s (2007) argument that natural selection will not favour
conformity if it prevents cumulative cultural evolution. Conversely,
our observation that weak conformity typically increases the
frequency of the most beneficial variant at equilibrium can be
viewed as consistent with Henrich and Boyd’s (1998) conclusion
that selection will favour conformity over a broad range of
circumstances. Our analysis therefore contributes to this debate
by emphasizing that the strength of conformity is likely to be
a key issue. To the extent that human cultural change can
be regarded as manifestly cumulative (Ghirlanda and Enquist,
2007), we anticipate that any conformist transmission is likely
to be comparatively weak. If this reasoning proves correct the
circumstances depicted in Fig. 3b are likely to be implausible,
leaving the prospects for using the level of cultural diversity to
infer the form of innovation favourable even in cases where weak
conformity operates.

5. Summary

Our analysis leads to the following conclusions.

• The introduction of new variants typically increases cultural
diversity substantially in the short term, but may actually
decrease diversity, depending on the frequency of existing
variants, and on how diversity is measured. Significant rates
of innovation are required for innovation to reliably increase
diversity.
• Innovation through modification can generate oscillating
trends in diversity, when each variant is an improvement on
the previous variants. Provided there is sufficient average time
between innovations for the most beneficial variants to reach
high frequency, a cycling pattern of diversity will emerge. In
such circumstances, increasing trends towards greater average
diversity are observed formediumbut not low innovation rates,
and high rates of innovation generating a steady increase in
diversity. Conceivably, such oscillations may have utility as a
signature of innovation through modification.
• Independent invention generally supports higher levels of
cultural diversity thanmodification and refinement. Innovation
through modification increases with innovation rate more
rapidly than innovation through independent invention.
• While equilibrium levels of cultural diversity typically increase
with innovation rate, this increase can be surprisingly modest,
particularly when innovation occurs through refinements of
earlier variants, orwhen conformist social learning is operating.
A doubling of the innovation rate is typically associated with an
increase in long-term cultural diversity of 6%–32%.
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• Cultural diversity can be used as an indicator of whether the
innovation process is driven by modification and refinement of
existing variants or independent invention.
• Conformity weakens the relationship between innovation and
diversity. Low levels of diversity enhance the equilibrium
frequency of beneficial variants, but high levels of conformity
may prevent beneficial variants from spreading. Only weak
conformist transmission is likely to be favoured by selection.
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Appendix A

The proposed model can be written as a general reaction–
diffusion competitionmodelwhere the time- and space-dependent
variable K describes the size of the considered population and the
variables ui the time- and space-dependent relative frequencies of
the different variants of the considered cultural trait within the
population. Their spread patterns are modelled by the following
(n+ 1)-variant competition system:

∂u1
∂t
= d1∆u1 + a1u1

(
1−

u1
K(t)− Z1

)
− µu1

−

n∑
i=2

c1i(u1)u1ui +
n∑
i=2

ci1(ui)u1ui + f1(t, x),

∂u2
∂t
= d2∆u2 + a2u2

(
1−

u2
K(t)− Z2

)
− µu2

−

n∑
i=1,i6=2

c2i(u2)u2ui +
n∑

i=1,i6=2

ci2(ui)u2ui + f2(t, x),

...

∂un
∂t
= dn∆un + anun

(
1−

un
K(t)− Zn

)
− µun

−

n−1∑
i=1

cni(un)unui +
n−1∑
i=1

cin(ui)unui + fn(t, x),

∂K(t)
∂t
= (λ− µ)K(t) (1− K(t)) ,

with Zi =
∑n
k=1,k6=i uk and the boundary conditions

∂ui
∂n
= 0, for x ∈ ∂D, i = 1, . . . , n.

These boundary conditions describe the situation for a finite
environment (a bounded convex two-dimensional domainD),with
no diffusion possible beyond its boundary ∂D. This assumption
would be fulfilled if we imagine D as isolated by natural barriers,
preventing exchange with the wider world. The general growth
behaviour of the considered population is modelled by the last
equation. It is assumed that the growth follows a bounded logistic
pattern where λ and µ stand for the birth respectively death
rates of the population. Further, the terms ∂ui/∂t indicate the
temporal changes of the variant frequencies and it is assumed
that these changes are determined by a diffusion and a growth
component. The diffusion component is modelled by the terms
di∆ui which describe the spatially spread of the variants through
unbiased social learning (or asocial learning) based on a random
walk with density-dependent mixing. The coefficients di describe
the ‘diffusion coefficients’ and are measures of the scale of
spatial interaction within the population. The growth components
are given by the reaction terms aiui

(
1− ui

K(t)−Zi

)
− µui −∑n

k=1,k6=i cik(ui)uiuk+
∑n
k=1,k6=i cki(uk)uiuk and can be attributed to

three different sources, intrinsic growth, death, and competition.
The intrinsic growth captures the process by which naive
individuals adopt a specific variant without knowing about the
alternative variants. This process is modelled by aiui

(
1− ui

K(t)−Zi

)
,

which describes bounded logistic growth with the growth rate ai
and the additional assumption that the variants ui are mutually
exclusive variants of the considered trait. We associate the rate ai
with the population’s judgement of the benefit of a specific variant
i. The more ‘useful’ a variant is to individuals in the population
the faster it can increase in frequency. In our analysis we consider
ai > 0,whichmeans that all variants are beneficial to some degree,
although the degrees of benefit can be different. Our assumption
of mutually exclusive variants implies that the sum of the variant
frequencies has to be restricted to the population size K(t) which
characterizes the state where the whole population has adopted
one of the possible variants of the considered cultural trait. That
can be expressed by the condition
n∑
i=1

ui(t, x) ≤ K(t), for any time t and any location x,

and it follows that the growth process of each variant is restricted
by the size of the ‘naive’ population K(t)−Zi. The termµuimodels
the loss of adopters of each variant due to natural death and we
assume that the fraction λui of newborns enters the population
as ‘naive’ individuals who may, depending on the intrinsic growth
coefficients ai and the frequencies of the variants in the considered
area, adopt one of the present variants. Further, the presence of
different variants in the population causes competition and the
growth is influenced by individuals that have already adopted
a variant switching to an alternative variant. Here we take the
symmetrical approach that the loss of adopters of variant i (due
to the presence of variant j) results in the gain of variant j and vice
versa. These interactions between the variants are described by the
competition terms cij(ui)ujui, whichmodel the switching processes
from variant i to variant j. If we rewrite the terms

cij(ui)ujui = c̄ij(ui, uj)ui,

they can be interpreted as a reduction of the intrinsic growth
behaviour due to the presence of the other variant. The switching
rates c̄ij(ui, uj) are determined by the number of adopters of
the competing variant, uj, and the general attitude towards the
switching of both variants, cij(ui). The exact form of this function
has to be derived from the specific application. Here we use
an approach where the attitude is dependent on the variant’s
frequency to account for the fact that some individuals might not
want to switch from their (already beneficial) variant to another
variant for various reasons. For instance, there is archaeological
evidence that not all hunters and gatherers convert into farmers
(Layton et al., in press). Finally, we assume that the variants do not
have to be present at the beginning (t = 0), but can be invented at
later time points.Wemodel the invention points by an exponential
distributed random variable,

τ ∼ exp(λ),

which describes the time between two innovations. The use of the
exponential distribution is motivated by the fact that innovation
during a certain time period can be described as a Poisson process.
This stochastic process assumes that the events occur with an
average rate λ and independently and it is known that the time
between successive Poisson events is exponential distributed with
the same intensity λ. The parameter λ stands for the rate of
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innovation. The process of innovation is modelled by the functions
fi. If the invention of variant i occurs, fi is non-zero in a small area
and for a small period of time so that the variant i becomes present
in the population.
We implemented the model in C++ and solved it numerically

with the Finite Element Method.

Appendix B

In order to quantify cultural diversityweuse four diversitymea-
sures which we develop through borrowing related biodiversity,
species richness and evenness measures from biology.

B.1. Simpson index

In a finite population the Simpson index represents the
probability that two randomly selected individuals in the habitat
carry different variants. It takes into account the number of
variants present, as well as the relative abundance of each variant.
Since we deal with continuous frequency variables we use the
formulation

D1 = 1−
n∑
i=1

p2i , with pi =

∫
D ui(t, x)dx

n∑
k=1

∫
D uk(t, x)dx

. (1)

The terms pi define the relative frequency of variant i in the
population and D1 describes the probability that two randomly
chosen individuals carry different variants. It yields 0 ≤ D1 ≤
(n−1)/n, where values near (n−1)/n correspond to highly diverse
systems and values near zero to more homogeneous systems.

B.2. Shannon index

The Shannon index incorporates the number of variants present
as well as their abundance. It is defined by

D2 = −
n∑
i=1

pi ln pi,

where pi defines the relative frequency of variant i in the
population (cp. relation (1)). This index corresponds to the
entropy measures in information theory or thermodynamics.
It is increasing either by having more unique variants, or by
having a greater variant evenness, but is not standardized to 1.
Standardization leads to the evenness index given by

D3 =
D2
ln n

,

where the denominator ln n describes the maximal value of the
Shannon index D2. The evenness index quantifies how equal the
variants are numerically.

B.3. Bulla index

Bulla (1994) pointed out that the above indices are little
influenced by the abundance of rare variants and are not able to
distinguish between situations which differ only in the presence
or absence of rare variants. He proposed an index that evaluates
the size of the overlapping area of the frequency distribution in
a completely even situation where all variants have the same
frequencies and the empirical distribution. The index can be
written as

D4 =

n∑
i=1
min(pi, 1/n)− 1/n

1− 1/n
,

where n represents the number of variants which are present in
the population and so the quotient 1/n represents the frequency of
each variant in a completely homogeneous situation. It is analogue
to D3 an evenness index.
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