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We explore the evolution of reliance on social and asocial learning using a spatially explicit stochastic model. Our analysis considers

the relative merits of four evolved strategies, two pure strategies (asocial and social learning) and two conditional strategies (the

“critical social learner,” which learns asocially only when copying fails, and the “conditional social learner,” which copies only

when asocial learning fails). We find that spatial structure generates outcomes that do not always conform to the finding of earlier

theoretical analyses that social learning does not enhance average individual fitness at equilibrium (Rogers’ paradox). Although

we describe circumstances under which the strategy of pure social learning increases the average fitness of individuals, we find

that spatial structure introduces a new paradox, which is that social learning can spread even when it decreases the average

fitness of individuals below that of asocial learners. We also show that the critical social learner and conditional social learner both

provide solutions to the aforementioned paradoxes, although we find some conditions in which pure (random) social learning

out-competes both conditional strategies. Finally, we consider the relative merits of critical and conditional social learning under

various conditions.
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Social learning is widespread in animals, and underpins both the

cultural diversity and the considerable ecological success of hu-

mans. Although there has been considerable and recent theoretical

analysis of the evolution of reliance on social learning, under-

standing of the relative effectiveness of different social learning

strategies remains limited. Here, the term social learning refers to

learning through observation of, or interaction with, another ani-

mal (Heyes 1994), which can occur by a number of psychological

mechanisms including enhancement effects, imitation, and emu-

lation (Whiten and Ham 1992; Heyes 1994; Hoppitt and Laland

2008). Conversely, asocial or individual learning refers to learn-

ing that occurs independently of any social influence. Historically,

scientists have tended to assume that animals should rely on so-

cial learning whenever they can, but recent mathematical analyses

reveal that this is incorrect, and that some mixture of social and

asocial learning is expected to occur in a changing environment

(Boyd and Richerson 1985; Rogers 1988; Feldman et al. 1996;

Henrich and McElreath 2003; Enquist et al. 2007). This finding re-

sembles the producer–scrounger frequency dependence observed

in social foraging models (Barnard and Sibly 1981; Giraldeau and

Caraco 2000). Asocial learners are information producers, who

typically incur additional costs associated with learning from a

direct interaction with the environment, whereas social learners

are information scroungers, who can obtain information relatively

cheaply from others, but are vulnerable to acquiring outdated or

inappropriate information this way in a changing environment
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(Kameda and Nakanishi 2002). Consequently, theoretical studies

predict a mixture of social and asocial learning at equilibrium.

Anthropologist Alan Rogers (1988) first pointed out the

“paradox” inherent in the observation that the fitness of social

learners at this polymorphic equilibrium would be no greater than

the average individual fitness in a population of asocial learners.

When rare, the fitness of social learners exceeds that of asocial

learners, but declines with frequency as there are fewer asocial

learners producing adaptive information in a changing environ-

ment. The population evolves to a mixed evolutionarily stable

strategy (ESS) where, by definition, the fitness of social learners

equals that of asocial learners (Giraldeau et al. 2003; Henrich

and McElreath 2003). This finding is now commonly known as

Rogers’ paradox (Boyd and Richerson 1985), so called because

it contrasts with a commonly held assertion that culture enhances

fitness. Although Rogers’ result is not inherently paradoxical, it

appears to conflict with the observation that social learning un-

derlies the effect of human culture on our ecological success and

population growth.

One resolution to this conundrum is to recognize that, in

a changing environment, selection ought to have fashioned in

our minds specific evolved rules (Boyd and Richerson 1985), or

“social learning strategies” (Laland 2004), that specify the cir-

cumstances under which individuals should exploit information

from others, and from whom they should learn. Previous theo-

retical studies have established that the average individual fitness

at equilibrium can be enhanced if individuals switch between re-

liance on asocial and social learning (Boyd and Richerson 1995;

Kameda and Nakanishi 2003). For instance, Enquist et al. (2007)

showed that a strategy of “critical social learning,” where individ-

uals only adopt asocial learning if social learning proves unsatis-

factory, outcompetes pure asocial and social learning strategies.

Boyd and Richerson (1985) also showed that average fitness is

higher than that in a population of asocial learners if social learn-

ers can improve their learned behavior so that there is cumulative

cultural evolution.

In this study, we extend the above analyses in three impor-

tant respects. First, we investigate the effects of social and asocial

learning in a spatially explicit context. There are several reasons

why a spatial framework is appropriate for such analyses. Studies

in other contexts have shown that spatial factors can profoundly

affect evolutionary outcomes (Nowak and May 1992; Kerr et al.

2006; Silver and Di Paolo 2006). Some human cultural phenom-

ena, such as agricultural practices, are physically grounded in

space (Durham 1991). Moreover, social learning is now known to

be widespread in vertebrates and even some invertebrates (Heyes

and Galef Jr. 1996; Leadbeater and Chittka 2007), many of which

are sedentary and/or territorial. In such cases, an analysis that

recognizes that individuals are often more likely to learn from

their near neighbors is appropriate. More generally, by compar-

ing well-mixed and spatially structured populations, our analyses

allow us to characterize the extremities of a range of unstructured

to structured populations. Learning in a structured population is

a special case of bias in social learning, where nearby individ-

uals are preferred as models to distant ones, and in this respect

spatially explicit analyses are more generally instructive with re-

spect to the effects of bias (Kameda and Nakanishi 2002). Below

we show that spatial structure strongly affects the outcome of

the aforementioned analyses into the relative merits of social and

asocial learning.

Second, previous analyses have been generally reliant on de-

terministic models (in the sense that they ignore random events),

although one recent exception is Whitehead and Richerson (2009),

However, stochasticity could play an important role in affecting

the balance of social and asocial learning, and the nature of the

equilibria reached. Our analysis uses a stochastic model that al-

lows individuals to disperse and to learn either locally or globally,

thereby allowing us to tease apart the effects of drift and space.

Third, and finally, our analysis investigates the impact of a

number of parameters that potentially affect reliance on social

and asocial sources of information, but hitherto have either not

been explored, or not been investigated in combination with each

other. These parameters include the degree of temporal and spatial

variation in the environment, environmental harshness (the extent

to which suboptimal behavior reaps fitness benefits), the number

of environmental states (which equates to the number of different

ways of performing a suboptimal behavior), and the relative costs

of social and asocial learning.

We show that spatial structure reinforces Rogers’ paradox,

because social learning can spread even when it decreases the

average fitness of individuals below that of asocial learners. We

also show that there are circumstances under which the strategy

of pure, unbiased, social learning increases the average fitness of

individuals above that of asocial learners (unbiased here means

choosing a model to copy at random). We find that two condi-

tional strategies, the critical social learner (learn asocially only

when copying fails) and conditional social learner (copy only

when asocial learning fails), can both provide solutions to the

aforementioned paradoxes, although we also find some condi-

tions in which pure social learning outcompetes both conditional

strategies, and so where the paradox remains. Finally, we con-

sider the relative merits of critical and conditional social learning

across a range of conditions. In the latter respect, we extend the

findings of Enquist et al. (2007) to a stochastic, spatially explicit

framework, and across a broader set of conditions.

The Model
We specify a square, x × x, toroidal environment, where each

cell is occupied by a single individual, such that n = x2 is the
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population size. Each cell has an associated environmental state,

which can change over time, and environmental states can vary in

space (i.e., between cells). In each time step, all individuals exhibit

a behavior (phenotype), which can change over time, according to

the dictates of an evolved learning strategy (their genotype), which

is fixed, and governs whether and when individuals learn asocially

or socially. The neighborhood of an individual consists of the eight

surrounding cells (the Moore neighborhood). For mathematical

convenience, we assume haploid asexual reproduction, such that

individuals have only one parent.

ENVIRONMENTAL VARIABILITY

Each cell has a value representing its environmental state s, which

takes an integer value between 1 and Ns, with adjacent integers

representing similar environmental states. We implemented a ring

structure making it possible for environments to step from Ns to

1, and vice versa, such that there were no environmental “end

states.” We considered two types of environmental variation: (1)

temporal only, where all cells have the same environmental state

(s value) but this value can change over time, and (2) spatio-

temporal, where, in addition, different cells can possess different

s values. In the temporal-only condition, all cells switch simul-

taneously to a new, randomly chosen, value in the range [1, Ns]

with probability ps. In the spatio-temporal condition, environ-

mental variation occurs in two ways—perturbation of patches

and single-cell changes. These two types of variation allowed us

to control the level of spatial autocorrelation while also main-

taining a reasonable degree of ecological validity. Perturbation

events convert all the cells in a randomly placed square to a single

environmental state in the range [1, Ns], with each state having

equal likelihood, and with a single perturbation event in each it-

eration (we chose a single event per iteration for computational

convenience; increasing the number of perturbations would have

the simple effect of increasing the rate of environmental change,

a parameter that in any case we varied systematically in our sim-

ulations). The size of the perturbed square followed a power law

distribution with the side length given by 8R−1/6 where R is uni-

form random in the interval [0, 1]. This perturbation regime was

chosen for ecological validity as it produces relatively many small

perturbations and occasionally large ones, as observed in real-

world ecosystems (Langmead and Sheppard 2004). The use of a

toroidal environment ensured that all cells had an equal probabil-

ity of being affected by a perturbation event. Each individual cell

subsequently switches state by a single step (i.e., from state 3 to

state 2 or 4) with probability ps. We implemented two conditions

for these single step changes: cells change either (1) toward the

average of their neighbors, if that average is different from its

current state (spatially correlated condition) or (2) in a random

direction (random condition). These conditions produce variation

in the level of spatial autocorrelation, measured as the probability

of a cell’s neighbor being in the same environmental state as itself

(henceforth pn). In the temporal-only condition, pn = 1, while in

the spatio-temporal condition, spatially correlated change gives

higher values of pn than random change.

BEHAVIOR, PAYOFF, AND FITNESS

Each individual is characterized by behavior, b, which can take any

integer value in the same range as the environment, 1 to Ns, and

can change in each model iteration. Each individual’s genotype

specifies a learning strategy. We consider two pure strategies, a

for asocial learners and s for random social learners, as well as

two conditional strategies, conditional social learner and critical

social learner (described above). An individual’s fitness, W, is

defined by the difference between the environmental state (s) in

the cell it occupies and the behavior it currently shows, minus the

cost of the learning strategy it uses

W = h−S − cstrat, (1)

where S is the number of steps between b and s implemented as a

ring,

S(b,s) =
{

|s − b|
Ns − |s − b|

if

if

|s − b| ≤ ⌊
Ns

/
2
⌋

|s − b| >
⌊

Ns
/

2
⌋ ,

h−S is the payoff associated with being S steps away from the ideal

behavior, and cstrat is the cost of the learning strategy (ca or cs

for the costs of asocial or social learning, respectively, and some

additive combination of these in the case of the two conditional

strategies). In the case that cstrat > h−S, W is given a lower bound of

zero. The parameter h can be interpreted as the “harshness” of the

environment, as increasing values increment the fitness penalty of

behavior not matching the environment. Higher h values also re-

sult in an increasingly nonlinear payoff function, whereas as h→1

the payoff function approaches a linear, or “risk-neutral” form.

Note that this incremental fitness structure differs from previous

models (e.g., Rogers 1988; Enquist et al. 2007), which assumed a

fitness payoff for learning the correct behavior only, with any other

behavior receiving no payoff. In each model iteration, each indi-

vidual reproduces with probability W, and the resultant offspring

always replaces an existing individual such that the population

size remains constant across iterations (see Dispersal below).

MUTATION

In general, offspring carry the same learning strategy as their

parent, but at every reproduction event there is a fixed probability,

μ, of mutation, which results in an offspring with an alternative

strategy. This mutation is how new strategies are introduced.

DISPERSAL

We assume a juvenile developmental period during which off-

spring acquire their parent’s behavior prior to dispersal. This
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occurs by asocial learning in the same environment as the par-

ent in the case of asocial learners, and by observing the parent in

the case of social learners. We simulate two dispersal conditions.

Local dispersal results in offspring replacing a randomly chosen

neighbor of the parent. In contrast, global dispersal results in off-

spring replacing an individual chosen at random from the entire

habitat, excluding the parent. In both conditions, individuals are

chosen to be replaced irrespective of their fitness and age. Repro-

duction is synchronous, such that it is not possible for offspring

to be replaced in the iteration in which they are born.

LEARNING

We assume asocial learners sample their environment and learn

the appropriate behavior, such that S = 0, with probability piOK ,

and acquire a random behavior with probability 1 − piOK . Asocial

learners pay a fixed cost ca irrespective of the learning outcome,

such that if piOK = 1 then their fitness is constant at 1 − ca.

Social learners, in contrast, match the behavior of a randomly

chosen demonstrator individual at each iteration, with fixed cost

cs, with demonstrators either chosen from the neighborhood (lo-

cal copying) or the entire population (global copying). Consistent

with earlier theory (Boyd and Richerson 1985; Rogers 1988) we

assume ca � cs. Initially, we restrict our analysis to these two

pure strategies and set piOK = 1, but subsequently introduce the

two conditional strategies, critical social learner and conditional

social learner (Enquist et al. 2007). Critical social learners first

use social learning, at cost cs, but if this fails to produce a match

to the environment, they then switch to asocial learning, at cost

ca. Conditional social learners first try asocial learning, at cost

ca, and only if this fails to produce a match, use social learning

at cost cs. As conditional social learning only differs from asocial

learning if there is a chance that asocial learning will not work,

following Enquist et al. (2007) we specify 0 < piOK < 1 when con-

sidering the conditional strategies. Thus, with probability 1−piOK ,

asocial learners acquire a random behavior. We assume for these

strategies that individuals can know a candidate behavior does not

match the environment, without knowing exactly what the state of

the environment is. Individuals using these conditional strategies

are forced to accept the final learning outcome they receive. For

example, if a critical social learner switches to asocial learning

it will acquire a random behavior with probability piOK and is

forced to accept that behavior even if it returns a lower fitness

than the behavior it originally learned socially and rejected.

SPATIAL POPULATION STRUCTURE

We concentrated on two conditions, which we termed “local” and

“global.” In the local condition, both dispersal and copying were

local—offspring disperse only to the neighborhood and social

learners copy only neighbors. In the global condition, dispersal

and copying were with respect to the entire population, as de-

scribed above. These two conditions represent a maximum and

minimum level of population structure within our model. Inter-

mediate levels can be represented by simulations in which only

learning is local (“local learning”) or only dispersal is local (“local

dispersal”) and we considered both these cases in our initial ex-

ploration of spatial effects, while noting that the latter condition

(local dispersal with global learning) is biologically rather less

plausible than the other three. In this way, we could explore the

effect of population structure without altering other conditions.

DEMOGRAPHY

In our general model, increasing or decreasing average individual

fitness affects only the rate of population turnover, as we specify

a fixed population size. Although this assumption has utility in

helping to understand the relative efficacy of alternative learning

strategies, it does not allow us to investigate the demographic con-

sequences of changes in individual fitness. We therefore explored

a variant of our model that did allow for demographic effects, by

making the simple assumption that the probability of any indi-

vidual surviving to the next iteration (psurvive) is related to their

fitness by the equation psurvive = psurviveMin + (1 − psurviveMin)W,

where psurviveMin is a parameter that defines the minimum prob-

ability an individual survives a model iteration and thus sets the

strength of viability selection in the model. Thus, it is possible for

the population to vary in size between zero (extinction) and the

maximum n, the latter representing the carrying capacity of the

environment. We assume empty cells provide no model for social

learners to copy, but are no more likely to be occupied by new

offspring than cells that are already occupied.

SIMULATION DETAILS

Each model iteration consisted of the following sequence of

events: learning, followed by reproduction and dispersal, and then

environmental change. For most simulations, we set x = 80, giv-

ing a population size, n, of 6400 individuals. This value of n was

chosen so as to be broadly representative of human populations

(6400 is close to the median for horticultural and herding societies,

and intermediate between hunter–gatherer and agrarian societies,

Lenski 1974). We set μ = 0.0008, equating to five individuals per

complete generation when n = 6400. Although this is obviously

high relative to natural rates of mutation in eukaryotes, we found

that reducing this rate does not qualitatively affect our outcomes,

and the higher rate offers significant computational advantages in

terms of time to equilibrium. All individuals were behaviorally

naı̈ve at the start of each simulation (i.e., b = 0). Below we dis-

cuss the results of sensitivity analyses investigating the extent to

which our conclusions are robust across a range of biologically

plausible values of n and μ.

We explored the effects of spatial variation in environmental

conditions by producing three spatial autocorrelation conditions,
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where the autocorrelation is expressed as the probability (pn) that

two randomly chosen but neighboring cells have the same envi-

ronmental state (which is effectively the autocorrelation but with

a “spatial lag” of one cell). The three conditions were pn = 1 (no

spatial variation at all), pn ≈ 0.44, and pn ≈ 0.2. The latter two

values are approximate as they result from stochastic simulation

runs and so the actual realized value in each simulation varied

around these values; the actual values were recorded during sim-

ulation runs. We ran these simulations with Ns = 10, and local

learning and dispersal, because we wished to explore conditions

in which Rogers’ paradox may not exist. We explored the effect

of environmental harshness (h) in the range 1.1 ≤ h ≤ 5.

Simulations were run for 2000 iterations, with 20 replications

per parameter value, and from each simulation we recorded the

mean proportion of each strategy over the final 250 iterations

of the run. Sensitivity analyses established that either increasing

the number of iterations over which each simulation was run to

10,000, or increasing the number of runs per parameter set to 200,

produced no change in the results.

We first compared the performance of a pure unbiased social

learning strategy invading a population of pure asocial learn-

ers and, unless otherwise specified, assumed ps = 0.1, cs = 0,

piOK = 1, and ca increasing from 0.01 to 0.7 in steps of 0.01.

We went on to investigate the evolution of conditional strategies,

again starting from a population of asocial learners. We exam-

ined all four genotypes (the two pure and two conditional strate-

gies) simultaneously, by considering the dynamics of a population

of asocial learners capable of mutating to the other three geno-

types. As conditional social learning only makes sense when there

is a possibility of individual learning not working (i.e., piOK <

1), we made this comparison with piOK = 0.5. For these analy-

ses, we introduced spatial variation in the environment by setting

pn ≈ 0.44.

Results
ANALYSIS OF PURE STRATEGIES

Effect of local dispersal and learning
We first examined the performance of the pure asocial and so-

cial learning strategies in a spatially homogenous environment

(pn = 1). At the outset, we note that the global condition pro-

duced a qualitatively good fit to analytical expectations (Rogers

1988; Enquist et al. 2007) with respect to the magnitude of ca

at which social learners will invade, the resultant average final

frequency of social learners, and the mean individual fitness in

the population at run termination (Fig. 1). Similar to Rogers’s

(1988) model, in the global condition the mean individual fitness

approximates that expected in a population of entirely asocial

learners, although it is marginally higher than expected for large

ca (Fig. 1B), whereas social learning frequencies were slightly
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Figure 1. The effect of spatial population structure: global versus

local dispersal and learning, showing (A) the proportion of social

learners, and (B) mean individual fitness, at run termination, plot-

ted against the cost of asocial learning (ca). In both, Ns = 1000,

h = 2, and pn = 1. Points are means from 20 runs ± 95% confidence

intervals. The vertical dashed line in the upper panel shows where

analytical models (Enquist et al. 2007) predict nonzero equilibrium

levels of social learners, with the curved dashed line giving the

analytical prediction for the frequency of the social learning strat-

egy. The dashed line in the lower panel shows the expected mean

individual fitness in a population of asocial learners only.

lower than the analytical prediction (Fig. 1A). These discrepan-

cies can be attributed to minor differences in the assumptions

of our model compared with the cited analytical treatments (see

Discussion).

Local dispersal and learning typically generates higher aver-

age final frequencies of social learners than global dispersal and

learning, particularly for larger values of ca, and can lead to social

learners reaching effective fixation (with an expected frequency

of 1−μ). Moreover, under local conditions the mean individual

fitness in the population is predicted to be less than that expected

for a population consisting of asocial learners, under conditions

in which the frequency of social learners exceeds the analytical

prediction. Thus, when population structure is imposed, not only

does social learning invade and fail to increase mean individ-

ual fitness, it may actually invade to fixation and reduce fitness

relative to a population containing only asocial learners.

The observation that social learning spreads to near fixa-

tion in spite of the fact that it reduces average individual fitness

introduces a new dimension to the debate surrounding Rogers’

paradox. This observation can be explained by comparing the fit-

ness of social learners that have at least one asocial learner in

their neighborhood with those that do not (Fig. 2). When learning

and dispersal are local, social learners with at least one asocial

learner in their neighborhood have greater fitness than both social
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Figure 2. (A) Snapshot of a running simulation with local learning and dispersal and a spatially uniform environment, taken within a

few iterations of an environmental state change. Left panel shows spatial distribution of learning strategies (black = asocial learner,

white = social learner). Right panel shows the fitness of each individual; the lighter the cell, the higher the fitness value. Asocial learners

have a fixed fitness (1− ca), which appears as gray. Social learners in the border regions have the highest fitness (appearing white in

the right panel) even though most of the social learners have much lower fitness (appearing black). (B) Mean fitness of social learners

plotted against the number of asocial learners in their neighborhood over the same simulation (error bars show 95% CI). Dashed line

shows fitness of asocial learners.

learners with no asocial learner in their neighborhood (Fig. 2A)

and asocial learners (Fig. 2B). This creates an edge effect in the

contact zones between genotypes, and because social learners

have greater fitness in these zones they can continue to increase

in frequency even when, on average, social learners have lower

fitness than asocial learners. Asocial learners cannot invade the

regions dominated by social learners because their social learning

neighbors will have a higher fitness immediately after an asocial

learner mutates into their midst.

We conducted further simulations to separate out the effects

of “local learning” and “local dispersal.” We found that local

learning with global dispersal produced identical results to global

learning and dispersal. In contrast, local dispersal with global

learning gave intermediate results, where some fixation of so-

cial learning was observed, but in a restricted parameter range

compared to the global case.

Thus far, in our model, increasing or decreasing average in-

dividual fitness affects only the rate of population turnover, as we

specify a fixed population size. Although helping to understand

the relative efficacy of various learning strategies, this feature

means it is not straightforward to understand the demographic

consequences of changes in average individual fitness. We there-

fore ran the above simulations in a modified version of our model

that did allow for demographic effects, by making the simple as-

sumption that the probability of any individual surviving to the

next iteration is related to their fitness. When we ran this model

EVOLUTION FEBRUARY 2010 5 3 9
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Figure 3. Demographic consequences of social learner invasion.

Results are from simulations run under identical conditions to the

local condition in Figure 1 with the exception that the probabil-

ity an individual survives a model iteration is proportional to its

fitness. Top panel shows the proportion of social learners, mid-

dle mean individual fitness, and bottom panel population size at

run termination, plotted against the cost of asocial learning (ca).

Points are means from 20 runs ± 95% confidence intervals, and the

dashed lines in the top and middle panels are identical to those in

Figure 1.

under the local conditions specified above, we obtained identical

results in terms of social learner frequency and mean individual

fitness, but with the confirmation that reduced mean individual

fitness results in decreased population size, culminating in extinc-

tion when the average probability of reproduction approaches zero

(W → 0; Fig. 3). When viability selection was relatively weak

(i.e., the minimum survival probability, psurviveMin, was close to

1), we found a significant portion of the parameter space in which

social learning would approach fixation, resulting in a stable pop-

ulation with reduced size compared to one containing only asocial

learners. Stronger viability selection (psurviveMin � 1) under local

conditions does not prevent social learners spreading, in spite of

the fact that they reduce mean individual fitness, to sufficiently

high frequency that the population goes extinct (Fig. 3). These

results did not change whether we started the simulations with

populations size set to 1 (i.e., at carrying capacity) or 0.5 (half

carrying capacity).

The above findings are generally robust across values of Ns

(the number of possible environmental states) between 10 and

1000 and values of h (controlling the harshness of the penalty for

suboptimal behavior) from 1.1 to 5, with one important exception.

For small Ns (e.g., Ns = 10), and in the local condition only, we

found that for large ca (e.g., ca ≥ ∼0.5), the mean fitness of indi-

viduals in the population was elevated compared to that expected

for a population of only asocial learners (Fig. 4A). Because under

these conditions random copying does increase mean individual

fitness, we have a set of conditions under which Rogers’ origi-

nal paradox does not exist. This fitness advantage of social over

asocial learning is due to the assumption that offspring acquire

the behavior of their parents during maturation—if offspring are

assigned a random behavior at birth, high frequencies of social

learners do not increase fitness (Fig. 4A). Note that the acquisi-

tion of parental behavior has no direct effect on offspring fitness,

because they must undergo an independent learning round af-

ter dispersal before selection occurs. It does however increase the

pool of potential models for social learners to copy. Because these

models are offspring of individuals with relatively high fitness,

on average, they will be performing locally adaptive behavior

patterns, making them available for social learners in the neigh-

borhood to copy. Thus, acquisition of parental behavior provides

indirect fitness benefits to social learners. As these effects are

reliant on the learning of locally adaptive behavior, low levels of

spatial autocorrelation in the environment reduce the magnitude

of this fitness increment (see below).

The simulations we report here all had the same mutation

rate (μ = 0.0008) and population size (n = 6400). We did ex-

plore the effects of varying these parameters, and the effects we

report here are largely robust to such variation. Note that be-

cause μ is a rate, changing the population size (n) alters the

absolute number of mutations per generation, and that therefore

these two parameters are intimately related. Changes in μ or n

have an intuitive effect on genotype frequencies: as expected, in-

creasing mutation rate (or decreasing population size) increases

the frequency of the less common genotype, and vice-versa. Ac-

cordingly, when social learning is common, mutation will tend to

introduce asocial learners, and as the latter acquire adaptive be-

havior this means that the amount of correct information entering

the population each generation covaries with the mutation rate.

Increased mutation rates (or reduced population sizes) are there-

fore associated with increases in the mean fitness of individuals

in the population. The reverse holds when the asocial learners

dominate. In contrast, decreased mutation rates accentuate the fit-

ness reductions associated with the local condition (e.g., Fig. 1),

because new, correct, information enters the population less

frequently.

Spatial variation in the environment
The level of spatial autocorrelation in the environment greatly af-

fected the frequency of social learners in the population (Fig. 4A).

Typically, spatial environmental variation reduces the benefits of

social learning, because it reduces the probability that copied
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Figure 4. The effect of (A) spatial variation in the environment, and (B) the harshness of the fitness penalty for suboptimal behavior, on

the proportion of social learners and mean individual fitness in simulated populations. Spatial variation is represented by the parameter

pn, the probability that two neighboring cells have the same environmental state, and harshness by the parameter h (see eq. 1). In

all cases learning and dispersal are local, and if not otherwise specified Ns = 10, h = 2, and pn ≈ 0.44. Note that the data labeled

“random” in (A) come from simulations in which there was no acquisition of parent’s behavior by offspring. Points are means from 20

runs, error bars are omitted for clarity. Dashed lines are as in Figure 1. Arrows indicate where an invading social learner has equal fitness

to surrounding asocial learners according to the inequality specified in (3). In the case pn ≈ 0.2 in (A), note that when ca is high (> 0.5),

fitness, reproductive rate, and thus selection strength is low, such that drift effects are able to maintain low levels of social learners in

the population even when their fitness is slightly lower than asocial learners.

individuals will have experienced the same environment as the

copier. This means that social learning requires higher costs of

asocial learning to invade a spatially variable environment, com-

pared with a uniform one. When dispersal and learning are global,

small values of pn mean that social learning never becomes es-

tablished. However, local learning partly negates these effects. In

the local condition, at intermediate levels of spatial autocorrela-

tion (pn ≈ 0.44), social learning can only become established at

higher levels of ca than the pn = 1 case, although the subsequent

transition to fixation occurs over a smaller range of ca values.

This effect is exaggerated at pn ≈ 0.2, with social learners unable

to invade until ca is very large, because social learning has to

be considerably cheaper than asocial learning if it is to have an

advantage when copying an asocial learner directly only returns

good information 20% of the time. Provided spatial autocorrela-

tion is sufficiently high, local learning results in an increase in

mean individual fitness above that expected for asocial learners,

even when social learning reaches near fixation. This establishes

further conditions for which Rogers’ paradox does not apply. Con-

versely, low spatial autocorrelation leaves mean individual fitness
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at or near that expected for a purely asocial learning population,

even with local learning.

In contrast to uniform environments, changes in environmen-

tal harshness (h) have major effects on the frequency of social

learning in spatially varying environments (Fig. 4B). Increasing h

has the effect of reducing the fitness payoff to social learners per-

forming suboptimal behavior, the frequency of which increases

with spatial variation. However small Ns values ameliorate the

impact of increased h, because proportionally more behavior pat-

terns will reap higher fitness dividends. This also means that lower

values of h result in an escape from Rogers’ paradox at relatively

low levels of ca, when Ns is low.

Predicting when social learning will invade
Here, we derive an analytical approximation for the conditions

under which a pure social learning strategy will invade a popula-

tion of asocial learners under local learning conditions. Near the

asocial learning fixation boundary, the social learning genotype

will increase when its expected fitness (Ws) exceeds 1 − ca, which

is the constant fitness of asocial learners (assuming piOK = 1). In

the invasion condition of a single social learner mutating into a

neighborhood of asocial learners, the probability of that social

learner copying correct behavior from a neighbor is given by the

probability that the neighboring cell has the same environmental

state multiplied by the probability that the neighboring cell has

not changed state in the iteration because its occupant learned the

correct behavior. We can write this as pn(1 − pc), where pc is the

probability of a cell changing environmental state per iteration.

When the environment is spatially uniform, pc equals the model

parameter ps, and when it is not, pc ≈ ps + 80/n (the second term

being the probability of a cell being included in a perturbation

event of area (8R−1/6)2 where the expectation of R is 0.5). When

learning is correct, then the payoff is 1. When learning is not

correct, with probability 1 − pn(1 − pc), then the expected payoff

Es approximates a weighted average of the payoffs when S (from

eq. 1) is greater than zero, as it must be when environment and

behavior do not match. Here, the weights are the probabilities of

neighboring cells being a given number of environmental state

steps apart. These considerations allow us to derive an expres-

sion for the expected fitness of an invading social learner (Ws)

surrounded by asocial learners, or

Ws = P(′learning is correct′)

×1 + P(′learning is incorrect′) × Es − cs

= pn (1 − pc) + (1 − pn (1 − pc)) Es − cs .

(2)

As successful invasion requires that Ws > 1 − ca, the condi-

tion for invasion can be written as

ca > 1 − pn (1 − pc) − (1 − pn (1 − pc)) Es + cs, (3)

where

Es =
∑�Ns/2�

i=1
wi h

−i

∑�Ns/2�
i=1

wi

,

and w is a vector of the probabilities that two neighboring cells

will be [1,2 . . . �Ns/2�] environmental state steps apart. Because

of the stochastic nature of our simulations and the complex spatial

variation that resulted, we calculated w directly from the simu-

lation runs. Note however that any behavior-payoff function can

be used to calculate Es for equation (2) provided it generates an

expectation when behavior is suboptimal.

The predictions generated by this inequality conform reason-

ably well to our simulations (Fig. 4). Note that when there is no

spatial variation (pn = 1), no cost to social learning (cs = 0), and

an infinite sequence of possible environmental states (Ns = ∞),

as posited by Rogers (1988) and Enquist et al. (2007), then

Es = 0, and (2) simplifies to ca > pc, as in their models. In-

equality (3) specifies that whether a strategy of pure social learn-

ing will invade depends not only on the relative costs of social

and asocial learning and the rate of environmental variation, but

also on the level of spatial autocorrelation in the environment

and the expected payoff of choosing a suboptimal behavior at

random.

ANALYSIS OF CONDITIONAL STRATEGIES

Here, we consider the merits of two conditional strategies, con-

ditional social learning (where asocial learning is attempted first

followed by social learning if asocial learning fails) and criti-

cal social learning (where social learning is attempted first fol-

lowed by asocial learning if a correct result is not obtained).

We began our investigation by again comparing our model di-

rectly to the analytical results of Enquist et al. (2007), which

requires pn = 1. We found that critical social learning was able

to both invade a population of pure asocial learners and increase

individual mean fitness under the same conditions predicted by

Enquist et al. (2007). Local learning and dispersal made very lit-

tle difference to the pattern of results. We also examined all four

genotypes (the two pure and two conditional strategies) simulta-

neously, by considering the dynamics of a population of asocial

learners capable of mutating to any the other three genotypes.

When piOK < 1, the expected fitness of asocial learners (Wa) is

given by

Wa = piOK + (1 − piOK)Ea − ca (4)

where Ea is the expected payoff when asocial learning fails (i.e.,

the expected payoff of a randomly chosen behavior), given by

Ea =
∑Ns

i=1
h−S(1,i)

Ns
.
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Figure 5. Frequencies of asocial (a, red), social (s, black), critical social (cs, green), and conditional social (ci , blue) learning strategies

(left panel), and population fitness increment over that expected of a purely asocial learning population (right panel), with the cost of

asocial learning plotted against environmental stability. Solid lines are estimates of the analytical predictions of Enquist et al. (2007) for

a perfectly mixed population. Unless otherwise specified Ns = 1000, h = 2, piOK = 0.5, cs = 0.02, and learning and dispersal are local. (A)

No spatial variation, pn = 1. (B) Effect of spatial environmental variation; pn ≈ 0.44. (C) Effect of reducing Ns; Ns = 10 and pn ≈ 0.44. (D)

Effect of reducing h; h = 1.1 and pn ≈ 0.44. (E) Effect of global learning and dispersal, in a spatially variable environment, pn ≈ 0.44.

Our results are virtually identical to Enquist et al.’s (2007)

consideration of three strategies (asocial plus the two conditional

strategies) under similar conditions (Fig. 5A). Pure social learning

never attained frequencies above the mutation rate in any of the si-

mulations, which is explained by the observation that social learn-

ers never had fitness higher than either asocial learning or either

conditional strategy when surrounded by those strategies (Fig. 6).

Results for the local and global conditions were comparable.
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Figure 6. Mean fitness of social learners (s), critical social learners

(cs) and conditional social learners (ci) when surrounded entirely

by individuals of other strategies, in simulations under the same

conditions as those in Figure 5A (spatially uniform environment,

Pn = 1) and 5B (spatially heterogeneous environment, Pn = 0.44),

with ca = 0.2 and pc = 0.5. Error bars show standard errors of the

means. No data are shown for any strategy surrounded entirely

by social learners, as pure social learners never attained suffi-

cient frequency in these simulations to completely surround any

cell. Dashed line shows fitness of asocial learners calculated using

equation (4).

Conditional and critical social learning in spatially
heterogeneous environments
However, our results differ markedly from earlier theory when we

introduce spatial variation in the environment. In the local condi-

tion, we found that the parameter space where conditional social

learning was favored over critical social learning to be signifi-

cantly expanded, such that critical social learning only dominated

at higher levels of ca (Fig. 5B–D). In spatially heterogeneous

environments, social learning is less effective than in uniform

environments, because individuals are more likely to pick up in-

appropriate information from others. (This is illustrated by the

fitness of social learners in Fig. 6). This has the effect of de-

creasing the probability that critical social learners will find an

optimum behavior through social learning, which they attempt

first, and consequently increases the likelihood that they will also

pay the cost of asocial learning. Figure 6 illustrates how the fitness

advantage of critical social learning over conditional social learn-

ers observed in a spatially homogeneous environment, is reversed

in a spatially heterogeneous environment, because the compara-

tive ineffectiveness of social learning means that critical social

learners more frequently pay the cost of both forms of learning

than do the conditional social learners.

In the global condition, in general, no strategy involving

social learning reached high frequency, except in the region in

which asocial learning is relatively cheap and the environment is

highly stable (Fig. 5E). Under these conditions, conditional so-

cial learning can reach relatively high frequency, but even then,

any increase in mean individual fitness is negligible. Surprisingly,

this leads to the counter-intuitive prediction that a social learn-

ing strategy will be favored when asocial learning is cheap (see

Discussion).

Once again, these qualitative findings are robust to variations

in both the number of environmental states (Ns) and the harshness

of the environment (h). We note, however, that where Ns is small

and ca is high, there are broad circumstances under which the pure

strategy of random social learning is favored over both conditional

strategies (e.g., Fig. 5C, where Ns = 10). Here the high probability

of acquiring high fitness behavior by chance renders the additional

cost of sometimes or always paying the cost of asocial learning

unprofitable. Reducing the harshness of the environment increases

the range of parameter space over which the conditional social

learning strategy outcompetes the critical social learning strategy

(Fig. 5D).

These results can be better understood with reference to ex-

pressions for the expected fitness of the conditional strategies,

W crit and W cond for critical social learner and conditional social

learner, respectively, given by

Wcrit = psOK + (1 − psOK)(piOK

+(1 − piOK)Ea) − (cs + (1 − psOK)ca)
(5)

and

Wcond = piOK + (1 − piOK)(psOK

+ (1 − psOK)Es) − (ca + (1 − piOK)cs),
(6)

where the term psOK represents the probability that social learning

returns the optimum behavior. Critical social learners outcompete

conditional social learners when W crit > W cond, which simplifies

to

Ea(1 − piOK)(1 − psOK) + ca psOK

> Es(1 − piOK)(1 − psOK) + cs piOK .

By denoting Es = Ea + α, we can simplify this expression

further to give

ca psOK − cs piOK > α(1 − piOK)(1 − psOK). (7)

This inequality illustrates how high values of the cost of

asocial learning (ca) and of the probability that social learning

returns optimal behavior (psOK) will favor critical social learning.

Environmental homogeneity (high pn, low pc) typically generates

high values of psOK , because it makes it more likely that the copied

individual will exhibit the correct behavior for the observer, giving
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critical social learners the advantage. Conversely, environmental

heterogeneity (low pn, high pc) reduces the efficacy of social

learning (reduces psOK), allowing conditional social learners to

invade. The inequality also shows how the greater the magnitude

of the expected payoff from suboptimal copied behavior over

randomly chosen behavior (α), the more likely that conditional

social learning invades. Any such increase in α will be affected

by environmental autocorrelation and also the parameter h.

Discussion
We have explored the evolution of different forms of learning us-

ing a spatially explicit stochastic model that incorporates a number

of factors that have previously been absent or rare in theoretical lit-

erature on the evolution of social learning up until now. We began

by validating our model by comparing it with earlier analytical

treatments (Rogers 1988; Enquist et al. 2007) and demonstrated

that it behaved comparably. There were nonetheless small, but

notable, discrepancies in some cases. For example in the global

condition shown in Figure 1, frequencies of social learning were

lower, and mean individual fitness was slightly higher, than the

analytical prediction. These minor differences can be attributed

to two factors.

First, in the model of Enquist et al. (2007), cultural evolution

(the spread of information by social learning) and genetic evo-

lution (the change in strategy genotypes over time) were strictly

separated, largely for reasons of analytical tractability, under the

assumption that the former was rapid compared to the latter and

thus likely to reach equilibrium before the next biological gener-

ation. In contrast, these processes occur concurrently in our mod-

els, such that selection could act against social learners to whom

correct information had not yet diffused following environmen-

tal change, disfavoring social learners relative to the analytical

case.

Second, our models assume that offspring acquire the same

behavior as their parent, either directly because of vertical cultural

transmission, or indirectly because through asocial learning each

is exposed to the same environmental contingencies. Given that

those parents with correct behavior are disproportionately more

likely to reproduce, this factor would tend to increase mean in-

dividual fitness slightly. Although vertical transmission does not

directly increment offspring fitness, it increases the pool of po-

tential “demonstrators” performing high-fitness behavior patterns

that are available to be copied, and hence provides peripheral fit-

ness benefits to social learners. Despite this, the behavior of our

models is qualitatively similar to those of Rogers (1988) and

Enquist et al. (2007), which lends confidence that our extensions

into analytically intractable contexts are well founded in existing

theory.

Our most striking finding is that, when learning and dispersal

are confined to local neighborhoods, social learning can invade to

effective fixation and yet result in a population with lower mean

individual fitness than would be expected with asocial learning

alone. This can be explained by examining the fitness of different

segments of the social learner population as the simulation runs.

The most useful comparison is between those social learners that

have at least one asocial learner in their neighborhood and those

that do not. In the condition in which learning and dispersal are

global, both these subpopulations have identical fitness. However,

when learning and dispersal are local, social learners with at least

one asocial learner in their neighborhood have greater fitness than

both other social learners and those asocial learners that have at

least one social learner in their neighborhood. In other words,

there is an edge effect wherever social learners are in contact with

asocial learners (social learners can acquire useful information

from nearby asocial learners at low cost) and as dispersal is local,

then the strategies can only replace each other in these edge zones.

Because the social learning genotype has greater fitness in these

contact zones, social learners increase in frequency even though

they on average have lower fitness than asocial learners (Fig. 2).

This perpetuates even though mutations can give rise to asocial

learners within the social learner population because as soon as

an asocial learner arises through mutation, the social learners

surrounding it jump in fitness as they now have a useful source of

information available, generating selection against the mutants. In

contrast, social learners surrounded only by other social learners

are isolated from such useful information, and become part of an

information cascade relying on increasingly outdated information,

with potentially detrimental consequences when the environment

changes (Bikhchandani et al. 1992; Giraldeau et al. 2003). By

this process, the ability of the population to track a changing

environment is lost, so mean individual fitness falls almost to

zero.

The fitness associated with differential learning strategies in

our model can be considered in two ways. The first is to consider

the fitness associated with learning to be just one component of

an individual’s fitness, and hence having a mean individual fitness

of zero need not correspond to population shrinkage if we assume

a baseline fitness level that maintains the population level. The

second is to consider the fitness in our models as representing

the entire fitness of the individuals concerned. Under this inter-

pretation, the way our analyses artificially hold population size

constant can make it difficult to interpret our results in term of

demographic consequences. The extension of our model to incor-

porate viability selection (Fig. 3) helps in this regard by showing

that reductions in average individual fitness due to high levels of

social learning in a population do indeed reduce population size,

and can lead to extinction. Here, our results are very similar to

those obtained by Whitehead and Richerson (2009). Although the
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risks associated with over-reliance on social learning producing

information cascades are well understood (Bikhchandani et al.

1992; Giraldeau et al. 2003), the role that population structure

could play in producing cascade-like effects, and their popu-

lation level evolutionary effects, has not previously been fully

appreciated.

Although no real-world population would be as rigidly struc-

tured as those in our simulations, the local condition in our anal-

ysis represents one bound of the spectrum of possible structural

constraints, with the equally unrealistic perfect mixing assumed

by analytical models (and our global condition) representing the

other. Real populations would be found somewhere between these

two bounds, which means that any invasion of a pure strategy of

social learning may reduce fitness. It is not hard to find exam-

ples of population structure with regard to information flow. One

example is the Landga people of New Guinea, where “craftsmen

report that, because of the great value of the skill [of stone adze

construction], they will instruct only close relatives” (Stout 2002).

Furthermore, spatial structure can be thought of as equivalent to

any social learning bias that results in copying from only a select

few behavioral models (Kameda and Nakanishi 2002). Thus, our

analysis suggests that Rogers’ paradox is even stronger than orig-

inally thought; pure social learning does not just fail to increase

fitness, it may even frequently reduce it.

We have also, however, described some conditions in which

this paradox need not apply. Under the specified behavior and

payoff structure, increasing the number of environmental states

effectively increases the number of ways an individual can gen-

erate suboptimal solutions and thus have low relative fitness.

The parameter h, which can be interpreted as representing the

“harshness” of a particular environment, sets the size of the rela-

tive fitness increment (�W) available to organisms that perform

the correct behavior compared with alternatives (as h → 1, then

�W → 0). Intuitively, it makes sense that as the fitness cost of

acquiring a suboptimal behavior through copying decreases then

that cost will become less significant relative to the cost of asocial

learning, and so social learners will be favored. This pattern was

observed in those simulations where h and Ns were manipulated.

Under conditions when h and/or Ns are low and ca sufficiently

high, random social learning can increase the mean fitness of in-

dividuals. These conditions represent relatively benign ecological

contexts, where almost any realistic behavior leads to some fitness

benefit.

Our analysis of conditional strategies endorses the conclu-

sions of Enquist et al. (2007) that the critical social learner and

conditional social learner strategies also resolve Rogers’ paradox.

Enquist et al. suggested that critical social learners outcompete

conditional social learners over a broad area of the parameter

space defined by the cost of asocial learning, ca, and environmen-

tal stability (1 − pc), and under the conditions they explored, our

models generate the same findings (Fig. 5A). However, the in-

troduction of a spatially varying environment in our simulations

significantly alters these conclusions (Fig. 5B–E) by revealing

conditions under which the conditional social learning strategy

is favored over the critical social learning strategy. Our analyses

suggest that the cost of asocial learning is the more important fac-

tor in determining the switch between conditional social learning

and critical social learning, with environmental stability having a

relatively weak influence. The switch typically happens when the

cost of asocial learning is around an order of magnitude higher

than the cost of social learning. In circumstances in which social

learning is effective, then critical social learning will be at an

advantage, because it will tend to pay the cost of asocial learn-

ing less than conditional social learning. Conversely, if social

learning is ineffective, then the reverse is true. Because increased

environmental spatial variation decreases the effectiveness of so-

cial learning, it will broadly favor conditional social learning (see

Fig. 6 and Inequality 7).

When learning and dispersal are global but the environment

varies in space, it is very difficult to obtain an appropriate behav-

ior through social learning. However, conditional social learning

can invade when asocial learning is relatively unreliable, the en-

vironment is highly stable, and, counter intuitively (because prior

theory has found that social learning is favored when the cost of

asocial learning is high, e.g., Boyd and Richerson 1985), when

the cost of asocial learning is low. Under these conditions, condi-

tional social learners will have an advantage over asocial learners

when asocial learning fails, and when there is a chance of learn-

ing something useful by social learning, which is higher when the

environment is stable. However, the payoff advantage is small,

and so will only have an effect when overall learning costs are

low, hence the counterintuitive result of a social learning strategy

invading a population of asocial learners when the cost of asocial

learning is low. This is also the region where conditional social

learners outperform critical social learners. The latter cannot be-

come established in stable environments because it is difficult for

the benefits of social learning to outweigh the low costs of asocial

learning.

We also found that pure random social learning can outcom-

pete either of the conditional genotypes when asocial learning

was relatively unreliable, Ns is low and ca is high (Fig. 5C).

This was because a low number of possible environmental states

means that even suboptimal payoffs from pure social learning can

be better than more optimal payoffs associated with high learning

costs. Here, the high probability of acquiring high fitness behavior

means the additional burden of sometimes or always paying the

cost of asocial learning carried by the conditional strategies ren-

ders them unprofitable. This finding suggests that random copy-

ing may be a good strategy in contexts in which it is difficult to

produce something effective alone, but there is a range of viable
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alternatives available to copy, all of which may produce something

reasonably effective. Aesthetic craft production, such as pottery

decoration or rug weaving, may fit these conditions, where the

chances of producing something pleasing to the eye oneself may

be relatively low, but there are a range of examples available to

copy, all of which have previously been selected because they

are to some degree, if not equally, pleasing to the eye. Recent

evidence reveals that for such traits, neutral drift models provide

a good fit. For example, Bentley et al. (2004) describe some spe-

cific examples of such cultural traits that appear to fit models of

random drift that would be expected from random copying. Our

analyses suggest that these contexts may favor adopting a random

copying strategy.

Increasing environmental harshness (h) favors the critical so-

cial learning strategy, and reduced harshness the conditional social

learning strategy (Fig. 5D; Inequality 7). We note that the formu-

lation of Enquist et al. (2007), in which only one in an infinite

number of behavior patterns confers any fitness benefit, repre-

sents an extreme in the possible distribution of h which favors

the critical social learning strategy. The effect of harshness oc-

curs because both conditional strategies deploy a combination of

asocial and social learning, but when critical social learners learn

asocially, and it fails to produce the correct solution, they are

allotted a random behavior. In contrast, when conditional social

learners learn asocially, and it fails to produce the correct solu-

tion, they receive the expected payoff of a social learner. Because

offspring acquire their parent’s behavior, then selection ensures

that social learning is likely to acquire behavior closer, on aver-

age, to optimal than random. By magnifying the expected returns

to a social learner performing a suboptimal behavior (increasing

α in Inequality 7), reduced harshness benefits conditional social

learners, because critical social learners switch to asocial learning

if social learning returns suboptimal behavior, and therefore risk

acquiring a random behavior rather than satisficing with “near

misses” from social learning.

In summary, using a simple spatially explicit stochastic

model, we have shown that spatial structure, including local learn-

ing and dispersal, can affect the evolution of social learning in

ways that would be difficult to explore and predict using an an-

alytical approach. The simulation framework we have presented

here is potentially a useful vehicle for exploring more complex

social learning strategies, such as “copy-in-proportion,” or “copy-

if-better” (Laland 2004), which would also be difficult to specify

analytically.
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