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In recent years researchers have drawn attention to a need for new methods with which to identify the

spread of behavioural innovations through social transmission in animal populations. Network-based

analyses seek to recognise diffusions mediated by social learning by detecting a correspondence

between patterns of association and the flow of information through groups. Here we introduce a new

order of acquisition diffusion analysis (OADA) and develop established time of acquisition diffusion analysis

(TADA) methods further. Through simulation we compare the merits of these and other approaches,

demonstrating that OADA and TADA have greater power and lower Type I error rates than available

alternatives, and specifying when each approach should be deployed. We illustrate the new methods by

applying them to reanalyse an established dataset corresponding to the diffusion of foraging

innovations in starlings, where OADA and TADA detect social transmission that hitherto had been

missed. The methods are potentially widely applicable by researchers wishing to detect social learning

in natural and captive populations of animals, and to facilitate this we provide code to implement OADA

and TADA in the statistical package R.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

‘Social learning’ is broadly defined as learning that is influenced
by observation of or interaction with a conspecific or its products
(Heyes, 1994). Social learning can result in ‘social transmission’,
which we define as occurring when the acquisition of information or
a behavioural trait by one individual exerts a positive causal
influence on the rate at which another acquires the same
information or trait. Social learning appears widespread across both
vertebrate and invertebrate taxa (Hoppitt and Laland, 2008;
Leadbeater and Chittka, 2007), whilst experimental work has
established that social transmission can result in the establishment
of behavioural traditions (e.g. Galef and Allen, 1995; Whiten et al.,
2005). This has lead to claims of animal cultures in natural
populations of apes (McGrew, 1998; Whiten et al., 1999; van Schaik
et al., 2003), cetaceans (Rendell and Whitehead, 2001; Krützen et al.,
2005) and monkeys (Perry and Manson, 2003). However, such
claims remain controversial because studies fail to adequately rule
out alternative explanations for local differences in behaviour, such
as local environmental differences, or genetic differences between
populations (Laland and Hoppitt, 2003; Laland and Janik, 2006).
There is concern that the current ‘ethnographic’ method, which
infers social transmission only where the alternatives of genetic or
ll rights reserved.
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environmental variation can be disregarded, will rule out genuine
cases of social transmission that covary with these factors (Laland
and Janik, 2006; Laland and Galef, 2009). Consequently, in recent
years researchers have called for the development of quantitative
methods for inferring social transmission from field and captive
study data that can rule out alternative explanations for the
observed effect (Laland and Janik, 2006; Laland and Galef, 2009,
and chapters therein).

One type of data that has previously been used to infer social
transmission in groups of animals is diffusion data, where
researchers monitor the spread of a novel behavioural trait.
For some time the shape of the ‘diffusion curve’ (the cumulative
number of individuals seen to perform the novel behaviour
plotted against time) was used to infer social learning
(e.g. Lefebvre, 1995a, 1995b). The assumption was that if learning
were asocial, the rate of learning would be the same for all
individuals, resulting in an r-shaped diffusion curve. In contrast, if
there were social transmission, the rate of learning would
increase as the number of demonstrators increased, resulting in
an s-shaped curve (Reader, 2004). However, this approach has
been somewhat discredited, since there are a number of
situations in which we expect to see an s-shaped diffusion curve
in the absence of social transmission (Laland and Kendal, 2003;
Reader, 2004), or an r-shaped curve in the presence of social
transmission (Franz and Nunn, 2009).

An alternative method is to use the order in which individuals
acquire a behavioural trait to infer social transmission from
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/
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diffusion data, on the assumption that if social transmission is
operating we might expect the spread to follow the patterns of
associations between individuals (Boogert et al., 2008; Morrell
et al., 2008). The reasoning here is that individuals that are closely
associated are more likely to learn from each other (Coussi-Korbel
and Fragaszy, 1995). A randomisation approach has already been
applied to test for such a pattern (Boogert et al., 2008; see also
Morrell et al., 2008), but below we demonstrate that this
approach is vulnerable to both Type I and Type II errors.

Here we propose an alternative method, which we call order

of acquisition diffusion analysis, or OADA, where a model of social
learning is fitted to the data by maximum likelihood, and tested
against a model with no social transmission.1 Our approach is
similar to a method recently proposed by Franz and Nunn
(2009), which they term ‘network-based diffusion analysis’ (or
NBDA). Franz and Nunn’s method exploits data on the time at
which individuals acquire a behavioural trait, rather than the
order in which they do so. However, as OADA and the
randomisation approach of Boogert et al. (2008) are also
network-based diffusion analyses, for clarity we rename Franz
and Nunn’s approach time of acquisition diffusion analysis (or
TADA), and retain NBDA as the more general term for network-
based approaches. We see the OADA and TADA approaches as
complementary, and in later sections of this paper we introduce
the OADA model, extend Franz and Nunn’s TADA method, and
provide a full comparison of OADA and TADA models. We end by
illustrating the methods by applying them to a published data
set: the diffusion of novel foraging traits in groups of starlings,
Sturnus vulgaris (Boogert et al., 2008).
2. Boogert et al.’s (2008) randomisation method

First, we will describe Boogert et al.’s (2008) randomisation
method and illustrate its limitations. To implement this method,
for each group in which a diffusion is recorded, one needs a
matrix containing an appropriate measure of association between
individuals (the association matrix), and the order in which
individuals acquired the behavioural trait (the ‘diffusion chain’).
The test statistic is then simply the summed strength of
associations between adjacent individuals in each diffusion chain,
summed across groups. If social transmission were occurring
preferentially between closely associated individuals, the test
statistic is likely to be larger than if individuals were learning
independently. To test this hypothesis, a null distribution is
generated by randomisation (Manly, 2007): the diffusion chain is
randomised for each group, and the test statistic calculated. If the
diffusion of multiple behavioural traits has been observed, one
can test the global null hypothesis of no social transmission by
summing the test statistic across traits. Boogert et al. proposed a
second test statistic where, instead of summing the associations
between adjacent individuals on the diffusion chain, one sums the
mean association between each individual and all individuals
before it in the diffusion chain. The logic here is that an individual
can learn from any informed individual, not just the preceding
individual on the diffusion chain. These are referred to as the
‘linear’ and ‘averaging’ metrics, respectively.

Boogert et al.’s randomisation method is non-parametric,
which has the obvious advantage that researchers need to make
few assumptions about the way in which social transmission and
asocial learning proceed in order to test the null hypothesis. A
1 In supplementary electronic material we provide code to run all analyses

described in this paper in the statistical language R 2.8.1 (R Development Core

Team 2008). Updated versions of the code will be made available on the authors’

website (http://lalandlab.st-andrews.ac.uk/).
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disadvantage is that it does not allow inferences about the
strength of social transmission to be made, which might be useful
for testing hypotheses about the nature of the social learning
strategy deployed (Laland, 2004). A more serious limitation is that
it is susceptible to false positives if closely associated individuals
happened to have a similar rate of acquisition through asocial
learning. For instance, individuals of high social rank might have a
higher rate of asocial acquisition due to increased access to the
resources required for learning. If, in addition, individuals
happened to associate with those of a similar social rank, this
might result in a false positive for the detection of social
transmission (see below). An alternative approach is to fit the
data to a model that includes both variables representing the
effects of social transmission and known variables that might
influence asocial learning, thereby controlling statistically for the
latter. Below we describe OADA and TADA methods that allow this
to be done.
3. Order of acquisition diffusion analysis (OADA)

3.1. Modelling social transmission

Our starting model assumes that the rate at which social
transmission occurs between a given dyad of informed and naı̈ve
individuals is linearly proportional to the association between
them. This assumption is likely to be reasonable provided that
(a) the probability a naı̈ve individual observes, or is exposed to,
the performance of the novel trait is proportional to its
association with the demonstrator, and (b) all informed indivi-
duals are approximately equally likely to perform the trait. The
rate of acquisition of the trait through social transmission for
individual i at time t, or lS,i(t), is given by

lS;iðtÞpð1�ziðtÞÞ
XN

j ¼ 1

�
ai;jzjðtÞ

�
; ð1Þ

where zi(t) is a binary indicator variable indicating whether i is
naı̈ve (0) or informed (1) at time t, and ai,j is the association
between individuals i and j, in a population of size N.

3.2. Inclusion of variables influencing asocial learning

At the same time we assume that it is possible that the
individual may acquire the trait through trial and error or direct
interaction with the environment, uninformed by the behaviour
of others. The rate of asocial learning for i, lA,i can be
modelled as

lA;ipð1�ziðtÞÞ expðb1x1;iþb2x2;iþ � � � þbV xV ;iÞ; ð2Þ

where x1,i, x2,i,y,xV,i are the individual-level variables influen-
cing asocial learning, and b1,b2,y,bV are the coefficients
specifying the effect of each. Exponential transformation of
the linear predictor ensures that the predicted rates are always
positive, which is common practise in statistical modelling of
rates (Therneau and Grambsch, 2001).

The question remains of how the effects of asocial learning and
social transmission are combined in the model. Here we suggest
two alternative approaches: (i) an additive model (Eq. (3)) and
(ii) a multiplicative model (Eq. (4)). If social transmission occurs
as an independent process by which individuals can acquire the
trait, then the total rate of acquisition, li(t), will be the sum of the
rates of asocial learning and social transmission, or

liðtÞ ¼ l0ðtÞð1�ziðtÞÞ
�

s
XN

j ¼ 1

ai;jzjðtÞþð1�sÞ expð
XV

k ¼ 1

bkxk;iÞ

�
; ð3Þ
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/
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where l0(t) is a baseline rate of acquisition common to all
individuals, and s is a parameter determining the strength of social
transmission (0rso1). Here s=0 indicates no social transmission
and s=1 implies all learning is social. For a natural diffusion, sa1
since the first individual must have acquired the behaviour through
asocial learning. The additive model is likely to be appropriate if
individuals can acquire the trait as a direct consequence of
observation (Hoppitt and Laland, 2008), for instance, by imitation
or some other form of observational learning.

Conversely, social transmission might often operate in an
‘indirect’ manner (Hoppitt and Laland, 2008), if the informed
individual’s behaviour influences the naı̈ve individual’s behaviour
in a manner that leads indirectly to learning. For example,
Leadbeater and Chittka (2007) found social transmission could
speed the rate at which bumblebees (Bombus terrestris) learned to
discriminate differently coloured artificial flowers, because they
were attracted to rewarding flowers occupied by informed
conspecifics, allowing them to learn by their own experience that
these flowers are rewarding. Here the effect of social transmission
is to increase the time spent in the area in which trait acquisition
can occur (local enhancement, Thorpe, 1956), and so will weight
the rate at which it occurs by otherwise asocial means. For these,
and similar cases, we suggest that a multiplicative model is more
appropriate, where

liðtÞ ¼ l0ðtÞð1�ziðtÞÞ s
XN

j ¼ 1

ai;jzjðtÞþð1�sÞ

0
@

1
A exp

XV

k ¼ 1

bkxk;i

 !
: ð4Þ

Here the (1�s) term ensures that the effect of social
transmission is weighted relative to the rate at which asocial
learning occurs. The choice of model should not be seen as a
nuisance. In cases where the experimenter has reasonable
confidence in the likely social learning mechanism, the appro-
priate model can be selected. In other cases, both models may be
used, and the model that best fits the data deployed. Indeed, this
exercise could potentially be seen as providing information about
the type of social transmission that is operating, although
confidence in such inferences would be enhanced by experi-
mental validation.

3.3. Model fitting

To implement an OADA we only need a relative measure of the
rate at which individual i acquires the trait at time t (that is,
relative to other naı̈ve individuals), or Ri(t)=li(t)/l0(t). The
probability that individual i is the next to learn can be written as

pnext;iðtÞ ¼
liðtÞPN

l ¼ 1

llðtÞ

¼
l0ðtÞRiðtÞ

l0ðtÞ
PN

l ¼ 1

RlðtÞ

¼
RiðtÞPN

l ¼ 1

RlðtÞ

ð5Þ

and the probability that it will be the nth individual to acquire the
trait, pn,i, is given by

pn;i ¼
RiðnÞPN

l ¼ 1

RlðnÞ

; ð6Þ

where Ri(n) is i’s relative rate of acquisition immediately prior to
the nth acquisition event. We can then write

RiðnÞ ¼ ð1�ziðnÞÞ s
XN

j ¼ 1

ai;jzjðnÞ
� �

þð1�sÞ expð
XV

k ¼ 1

bkxk;iÞ

0
@

1
A ð7aÞ

and

RiðnÞ ¼ ð1�ziðnÞÞ s
XN

j ¼ 1

�
ai;jzjðnÞ

�
þð1�sÞ

0
@

1
A exp

XV

k ¼ 1

ðbkxk;iÞ

 !
ð7bÞ
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for the additive (Eq. (3)) and multiplicative models (Eq. (4)),
respectively, where zi(n)is the status of individual i prior to the
nth acquisition event.

Eqs. (6) and (7) enable one to calculate the log-likelihood of
the observed order of acquisition data for a given set of
parameters, s and b1,b2,y,bn (e.g. see Morgan, 2009). The log-
likelihood is easily calculated for multiple groups or multiple
traits by adding together the log-likelihoods for each separate
diffusion. The model is then fit by choosing the parameter values
that minimise the log-likelihood, using a suitable numerical
optimisation routine. In the supplementary material we provide
R functions that fit both models (see ESM: ‘‘Additional Informa-
tion’’ part C).

To fit the models, we find that the optimisation algorithms
used are more likely to converge if we use the reparameterisation
of s0=s/(1�s) with 0rs0oN. This results in an additive model of

RiðnÞ ¼ ð1�ziðnÞÞ s0
XN

j ¼ 1

ai;jzjðnÞþexpð
XV

k ¼ 1

bkxk;iÞ

0
@

1
A ð8aÞ

and a multiplicative model of

RiðnÞ ¼ ð1�ziðnÞÞ s0
XN

j ¼ 1

ai;jzjðnÞþ1

0
@

1
A exp

XV

k ¼ 1

bkxk;i

 !
: ð8bÞ

To favour convergence of maximum likelihood estimation, we
suggest use of Eq. (8) for model fitting, and transforming to the
more intuitive parameterisation in Eq. (7) for interpretation.

3.4. Model selection and hypothesis testing

To test for social transmission, researchers can use a likelihood
ratio test (LRT, see Morgan, 2009 for details) to compare the fitted
model with a nested null model in which s is constrained to be
zero. The significance of other parameters in the model can also
be tested in this way, and the model reduced in a manner
analogous to a multiple regression. Confidence intervals for
parameters can be calculated using profile-likelihood techniques
(ESM: Additional Information, part D; Morgan, 2009). Researchers
can also use Akaike’s Information Criterion (AIC) to compare
alternative models with different degrees of freedom (Burnham
and Anderson, 2002). This has the advantage that non-nested
models can be compared, such as the best-fitting model contain-
ing social transmission and the best-fitting model without social
transmission, when each contains different individual-level
variables. Methods for dealing with tied data are given in the
ESM (Additional Information, part F).
4. Comparison of OADA with TADA

Here we describe and extend Franz and Nunn’s NBDA method,
which we rename TADA, in the context of our OADA model, and
using our notation. This facilitates a direct comparison between
models reliant on order or time of acquisition.

TADA makes the same assumptions about social transmission
as our model (Eq. (1)), but the models are fitted to time of
acquisition data rather than to order of acquisition data,
meaning the absolute rate of acquisition, li(t), is modelled,
rather than the relative rate Ri(t), and the baseline rate of
acquisition is taken to be constant l0(t)=l0. Franz and Nunn
suggest two approaches. The first involves fitting separate
models for social transmission and asocial learning, with
li(t)=l0, and comparing the two models using AIC. However,
this approach is only useful if the diffusion starts with informed
individuals in the population, otherwise the likelihood of the
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/
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model for social transmission will always be zero, since the
likelihood of the first individual’s acquisition is zero. Similar to
OADA, Franz and Nunn’s second approach involves fitting a two-
parameter model, which allows for both social transmission and
a constant rate of asocial learning.

There are inherent strengths and weaknesses to both TADA and
OADA methods. The fundamental difference is the type of data
that is modelled, time or order. We demonstrate below that time
of acquisition data typically possesses more power to detect a
social transmission effect, which is the major advantage of TADA.

However, TADA requires assumptions about the specific distribu-
tion of latencies: Franz and Nunn assume an exponential
distribution, where the rate of acquisition at a given time is
dependent only on the status of other individuals in the group. In
contrast, OADA makes the less onerous assumption that the ratio
of acquisition rates between two individuals is dependent only on
the variables included in the model. The flexibility of this
‘proportional hazards’ assumption has lead to the preference of
the Cox proportional hazards model as the most widely used
method for analysing time to event data (Therneau and
Grambsch, 2001). The similarity of OADA to the Cox model is
described in the ESM (Additional Information, part A). Below we
show that the vulnerability of TADA and OADA to Type I error
varies, and that each is more reliable than the other in some
contexts.

In its initial form, Franz and Nunn’s TADA is also susceptible to
the same problems of confounding variables as Boogert et al.’s
randomisation method. Accordingly, here we extend TADA to
include individual-level variables influencing rate of acquisition.
By the above reasoning, the additive model can be written as

liðtÞ ¼ l0ð1�ziðtÞÞ s
XN

j ¼ 1

ai;jzjðtÞþð1�sÞ exp
XV

k ¼ 1

bkxk;i

 !0
@

1
A ð9aÞ

and the multiplicative model as

liðtÞ ¼ l0ð1�ziðtÞÞ s
XN

j ¼ 1

ai;jzjðtÞþ1�s

0
@

1
A exp

XV

k ¼ 1

bkxk;i

 !
ð9bÞ

where l0 determines the overall rate of asocial acquisition, and s

parameterises the social transmission effect relative to the rate of
asocial acquisition. As for OADA, we find the reparameterisation
s0=s/(1�s) works better for maximum likelihood estimation. We
have also found this reparameterisation preferable to indepen-
dent parameters for the rate of social and asocial transmission,
since in the latter case the estimators for each are highly
negatively correlated (Morgan, 2009). Setting l0=1/L0 can facil-
itate convergence of the optimisation routines. The model can
either be fitted by treating time as a continuous variable or by
splitting time into a number of discrete steps, depending on the
way in which the data was collected (details are given in the ESM:
Additional Information, part E). Functions to implement this
extended version of TADA for the multiplicative and the additive
models, using both discrete and continuous methods of fitting, are
given in the ESM: Additional Information part E.
5. Simulation details

We compared how the OADA, TADA and randomisation models
performed under different circumstances. All simulations considered
the diffusion of a single learned behavioural trait through a single
hypothetical group of animals of size N. Where the rate of
acquisition of the trait was affected by an individual-level variable,
this was generated by drawing a value for each individual from a
normal distribution (x�N(0,1)). We simulated an association matrix
for the population by first generating a matrix of associations that
Please cite this article as: Hoppitt, W., et al., Detecting social t
j.jtbi.2010.01.004
was normally distributed with a specified correlation, c, with the
magnitude of the differences in the individual-level variable. To
make the matrix more realistic, we made the matrix symmetrical by
setting a0i;j ¼ a0j;i ¼ ðai;jþaj;iÞ=2. We then transformed the associations
to vary between 0 and 1 by ranking the values and dividing each by
the maximum rank. To explore the effect of different levels of
connectedness within the group, we set associations less than a
threshold value, T, to zero, and explored how the magnitude of T

affected the utility of the models.
Order and time of acquisition data were simulated according

to either the additive model (Eq. (8a)) or the multiplicative model
(Eq. (8b)) for specified values of l0, s and b. At each point in the
diffusion chain, a value was drawn from an exponential distribu-
tion with an appropriate rate parameter for each naı̈ve individual
(determined by Eq. (9a) or (9b)). The individual with the lowest
value was taken to be the next individual to solve the task, with
the intervals between solving events determined by the value
itself. The data was then analysed using the additive and
multiplicative OADA, the additive and multiplicative TADA,
randomisation tests using Boogert et al.’s linear metric (1000
randomisations) and averaging metric (100 randomisations only,
due to larger computation time). The simulations were usually
run 10,000 times for each combination of simulation parameter
values. This was reduced to 1000 times when there were
individual-level variables due to the increased computation time
required to fit NBDA models.

Where there were no individual-level effects, we considered a
variety of group sizes (N=10, 20, 50), and social transmission
effect sizes (s=0, 0.2, 0.4, 0.6, 0.8, 0.99), and recorded the power of
each technique to detect social transmission. Since there were no
individual-level variables, the multiplicative and additive models
are equivalent in this case.

We explored individual-level effects in simulations in which
group size was fixed at 20, b=10, and there were a range of social
transmission effect sizes (s=0, 0.4, 0.8) and levels of correlation
between the association matrix and differences in the individual-
level variable (c=0, 0.4, 0.8). We recorded the statistical power to
detect social transmission at the 5% significance level and the
OADA and TADA models preferred by AICc.

In another series of simulations, we allowed the baseline rate
of acquisition, l0(t), to vary within a diffusion, either (i) at random
or (ii) systematically. For (i), to determine the initial baseline
acquisition rate a number was drawn from a normal distribution
with mean=log (0.0002) and a standard deviation of 0, 2, 4, 6 or 8
and then exponentially transformed. This process was repeated to
generate a new baseline acquisition rate after each acquisition
event. For (ii), the baseline hazard rate either increased or
decreased with successive acquisition events, with l0(t)=0.0002
exp(ep(t)), where p(t) is the proportion of demonstrators in the
population at time t, and e determines the strength of the effect.
We considered e=�4, �3, �2, �1, 0, 1, 2, 3, 4, s=0 or 0.8,
and b=0.

To explore the effect of network connectedness, we altered the
threshold value, T, under which simulated associations were set to
zero (T=0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), decreasing the
number of non-zero associations in the network as T increases.
Here we assumed s=0.4 or 0.8, N=20 and b=0. Unless otherwise
indicated, T=0.8, l0=0.0002.
6. Application of the models to Boogert et al. (2008)

We go on to illustrate the methods by applying OADA and
TADA to a published dataset. Boogert et al. (2008) presented
three captive groups of five starlings (S. vulgaris) with six
different artificial foraging tasks. Each task was presented
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/
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separately for several sessions. The time (measured cumula-
tively over sessions) at which each individual first contacted
each task and first solved each task was recorded. Associations
between individuals were calculated as the proportion of
discrete point samples a given dyad was within pecking
distance. In addition, a number of individual-level variables
were recorded: (a) a measure of asocial learning ability, (b)
two measures of neophobia: (i) the latency to feed in a novel
environment, and (ii) average latency to feed next to three
novel objects, (c) two measures of social rank: (i) competitive
rank: time spent dominating a limited resource and (ii)
agonistic rank calculated as David’s scores based on agonistic
interactions (de Vries et al., 2006). The aims of the study were
to investigate which individual-level variables predicted the
diffusion dynamics, and whether the order of acquisition of
task solution followed patterns of association. Boogert et al.
pursued the former aim by fitting linear mixed models (LMMs)
or generalised linear mixed models (GLMM) to data on the
number of times an individual was first to solve a task within
its group, and the latency to solve the task (excluding the first
solver), each with the individual-level variables as predictors.
The question of whether order of acquisition followed patterns
of association was tested using the randomisation approach
described above. Boogert et al. reported their analysis showed
no evidence for social transmission.

Here we implement an alternative approach that uses OADA

and our extended version of TADA, comparing the results of
each with the original findings. The methods were applied to
the data from all diffusions, across all groups and tasks, in a
global analysis. To test for social transmission, we first
identified the combination of individual-level variables best
able to account for the data, in the absence of social
transmission. We fitted models with all possible combinations
of individual-level variables and recorded AICc in each case.
We selected the two best models and used these as null
models to test for social transmission, assuming additive and
multiplicative functions. We then fit a model with separate
social transmission parameters for each group. We used a LRT
to test each of these against zero, and dropped those that were
not significant at the 5% level. We quantified the significance
of the terms left in the model by dropping each from the model
and using a LRT. To assess whether the social transmission
parameter differed between specific groups, we fitted a null
model with the parameter constrained to be equal for each
group, and used a LRT to compare this to a model where they
were unconstrained. We also obtained approximate confi-
dence intervals for each parameter using profile-likelihood
techniques (see ESM: Additional Information, part D). The
same approach was used to fit TADA. Individual-level variables
representing an effect of ‘group’ and ‘task’ were considered
alongside those considered in OADA.
7. Results

7.1. Comparison in the absence of individual-level effects

In the absence of individual-level effects, and for a given group
and effect size, TADA typically had more statistical power to
detect social transmission than did OADA, while both of these
methods were more powerful than the averaging and linear
randomisation methods (Fig. 1a and b). In the case of the
randomisation methods, the averaging metric usually provided
more power than the linear metric, especially for larger group
sizes, where social transmission is less likely to occur between
adjacent individuals in the diffusion chain. In most cases, power
Please cite this article as: Hoppitt, W., et al., Detecting social t
j.jtbi.2010.01.004
increased with group size, except for the randomisation method
with the linear metric. As expected, statistical power also
increased with the strength of social transmission.

7.2. Effect of individual-level variables

When there was no correlation between the individual-level
variable and association, the Type I error rates were appropriate
(�5%) for all methods (Fig. 1d). However, the power to detect an
effect using OADA or TADA was greatly increased by inclusion of
the variable in the model (see Fig. 2).

As the correlation between the individual-level variable and
association increased, Type I error rates were greatly inflated for all
methods that did not include an individual-level variable (see
Fig. 1d). However, inclusion of the individual-level variable in both
OADA and TADA methods restored Type I error to an appropriate
rate, for both multiplicative and additive models. When social
transmission and asocial learning were additive, power to detect
social transmission was little affected so long as the additive model
was fitted to the data (see Fig. 2a and b). In contrast, when social
transmission and asocial learning combined multiplicatively, power
was markedly reduced, though again, there was more statistical
power when the appropriate multiplicative model was used, rather
than the additive model (see Fig. 2c and d). AICc was generally a
successful criterion in selecting the appropriate model (additive
versus multiplicative, see ESM: Additional Information, part B).

These simulations demonstrate that the inclusion of indivi-
dual-level variables in the analysis of diffusion data is highly
desirable, both with respect to controlling Type I error rates, and
maximising statistical power. This is an advantage that both OADA

and our extension of TADA have over the randomisation
techniques. Again, we see that TADA has more power than OADA

in each case. Our analysis also lends confidence that the
procedure we recommend will select a model (multiplicative or
additive) appropriate to the data.

7.3. Varying baseline rate of acquisition

We manipulated the baseline rate of acquisition, both by
increasing the variance of the underlying distribution (Fig. 3a) and
by allowing it to increase or decrease as the diffusion proceeded
(Fig. 3b). In all cases the power and Type I error rates remained
approximately constant for the OADA method (see Fig. 3), as we
would anticipate, since the baseline hazard function does not
change the relative rate of acquisition. In contrast, TADA was very
sensitive to changes in the baseline acquisition rate. When the
baseline acquisition rate varied at random, statistical power
dropped as the variance of the underlying distribution of rates
increased (see Fig. 3a), whereas the Type I error rate increased.
When the baseline acquisition rate decreased systematically
throughout the diffusion, it obscured a social transmission effect
from the TADA method (see Fig. 3b). Conversely, when the
baseline acquisition rate increased, this resulted in an increase in
Type I error for TADA (but see below).

These simulations illustrate the relative strengths and
weaknesses of OADA and TADA. If there are fluctuating
variables influencing the rate of acquisition that affect all
individuals equally, then OADA is preferable to TADA. Likewise,
if there is a factor that causes a systematic decrease in the
baseline acquisition rate, OADA may be more likely to detect
social transmission. This might occur if, for example, an
increasing number of informed individuals depletes the
resources necessary for trait acquisition, or increases the
number of opportunities for scrounging, which might inhibit
acquisition (Giraldeau and Lefebvre, 1987). The increase in
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/

dx.doi.org/10.1016/j.jtbi.2010.01.004
dx.doi.org/10.1016/j.jtbi.2010.01.004
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Type I error for an increasing baseline acquisition rate could be
seen as a problem with TADA if there is reason to believe that a
variable is influencing trait acquisition in this way. However, a
systematic increase in baseline acquisition rate could be a
direct result of the increased number of informed individuals,
which would mean it is a case of social transmission by our
definition. This shows that OADA is only sensitive to social
transmission if it results in a difference in the relative rate of
Please cite this article as: Hoppitt, W., et al., Detecting social t
j.jtbi.2010.01.004
acquisition by individuals, whereas TADA is also sensitive to
absolute changes in the rate of acquisition (Fig. 3b).
7.4. Number of connections in the network

Network connectedness (the number of non-zero associations)
had a different effect on OADA and TADA (see Fig. 4). For TADA,
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/

dx.doi.org/10.1016/j.jtbi.2010.01.004
dx.doi.org/10.1016/j.jtbi.2010.01.004
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power either remained approximately constant (s=0.8) or
declined (s=0.4) as connectedness went down (increasing T).
In contrast, for OADA, the power increased in both cases,
appearing to converge with the power for TADA when the
proportion of zero associations was large. This is because
OADA will detect social transmission when it results in large
differences between the rates at which individuals acquire the
trait, and works best when opportunities for social learning differ
greatly between individuals at a given time. In contrast, TADA is
also sensitive to the acceleration in the rate of acquisition which
occurs as a result of an increased number of informed individuals.
This effect will be more pronounced when there are many
connections between individuals, offering many opportunities for
social transmission.
7.5. Application of the models to Boogert et al. (2008)

Where the magnitude of the social transmission parameter was
constant across groups, the best predictive OADA model included
Please cite this article as: Hoppitt, W., et al., Detecting social t
j.jtbi.2010.01.004
object neophobia and asocial learning, and no social transmission
(henceforth Model 1: AICc=138.39), but a model with latency to
feed in a novel environment as sole predictor was almost as good
(henceforth Model 2: AICc=138.40). Social transmission was not
statistically significant when added to either model as an additive
effect (Model 1: LR=0, p=1; Model 2: LR=0.03, p=0.870) or a
multiplicative effect (Model 1: LR=0.321, p=0.571; Model 2:
LR=0.468, p=0.494). However, when the social transmission
parameter was allowed to vary between groups, we found a
significant effect on group 1 in all models (po0.05, see Table 1),
but no evidence for an effect on groups 2 or 3 (p40.5, see Table 1).
For the additive model the social transmission effect on group 1
was also found to be significantly stronger than a putative effect on
group 3 (Model 1: LR=5.64, p=0.018; Model 2: LR=15.95,
po0.001) but not than that on group 2 (Model 1: LR=0.65,
p=0.420; Model 2: LR=1.02, p=0.312). The same result was found
for the multiplicative model: group 1 versus group 3: Model 1:
LR=5.15 p=0.023; Model 2: LR=4.30, p=0.038; group 1 versus
group 2: Model 1: LR=0.91 p=0.340; Model 2: LR=0.25, p=0.614.
The best model, as judged by AICc included object neophobia and
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/

dx.doi.org/10.1016/j.jtbi.2010.01.004
dx.doi.org/10.1016/j.jtbi.2010.01.004
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asocial learning performance as individual-level variables, with an
additive social transmission effect for group 1 only (AICc=135.08),
although a multiplicative model worked almost as well
(AICc=135.14). The AICc when all individual-level variables were
dropped from the final model was 136.15, which is preferred to an
additive model including latency to feed in a novel environment.
None of the individual-level variables were significant at the 5%
level when dropped from any of the final models. See Table 1 for
full details of the best-fitting OADA models.

The best predictive TADA model excluding social transmission
included latency to feed in a novel environment as a sole predictor
(AICc=1175.56), so this was used as the null model to test for
social transmission. When social transmission was added to the
null model it was highly significant for both the additive
(LR=15.54, df=1, po0.001) and multiplicative model (LR=16.75,
df=1, po0.001). There was no evidence of a difference in the
effect of social transmission between groups for either the
Please cite this article as: Hoppitt, W., et al., Detecting social t
j.jtbi.2010.01.004
additive (LR=0.27, df=2, p=0.872) or multiplicative model
(LR=1.30, df=2, p=0.523). The best model, as judged by AICc,
included latency to feed in a novel environment as an individual-
level variable, with a common multiplicative social transmission
effect for all groups (AICc=1161.02), although an additive model
worked almost as well (AICc=1162.24). In contrast to the OADA

model, there is a clear indication that latency to feed in a novel
environment has a negative relationship with individuals’ rates of
acquisition (Additive model: LR=5.04, df=1, p=0.025; Multi-
plicative model: LR=6.80, df=1, p=0.009). See Table 2 for full
details of the best-fitting TADA models.

Consistent with Boogert et al.’s original conclusions, when all
groups were analysed together, there was no evidence of social
transmission using the randomisation methods used by Boogert
et al. (linear metric=206.5; p=0.170; averaging metric=204.2,
p=0.149).2 However, when groups were analysed separately (this
was not done by Boogert et al.), both randomisation metrics
provided evidence for social transmission in group 1 (linear
metric=72, p=0.013; averaging metric=69.1, p=0.012; new
metric: G1=25.3, p=0.012), but no evidence for groups 2 and 3
(p40.15 in all cases).

Whereas the randomisation tests used by Boogert et al. failed
to find evidence of social transmission, based on the order of
acquisition data, our OADA method found evidence for social
transmission in group 1. When the randomisation methods were
reapplied to the data from each group separately, the same
results were found. However, unlike OADA, the randomisation
methods do not enable us to construct confidence intervals on
the effect of social transmission in each group. The 95%
confidence intervals from OADA reveal that the data provide no
resolution to distinguish social transmission from asocial
learning in group 2, whereas in groups 1 and 3, the data are
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/

dx.doi.org/10.1016/j.jtbi.2010.01.004
dx.doi.org/10.1016/j.jtbi.2010.01.004
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Table 1

Model used Null model Null model

AICc

Estimated social transmission effect

(s) 95% CI LRT (H0:s0 =0)a

Estimated effects for individual-level

variables LRT (H0:b=0)a

AICc for a model

including social

transmission for

groups:

Group 1 Group 2 Group

3

ON AL LFNE 1 1 & 2 All

Additive

OADA

Object neophobia+asocial

learning

138.4 E1b 0.06 0 �0.348 �0.350 135.08 137.26 139.63

[0.08,1) [0,1) [0,0.13] w2
1 ¼ 2:87,

p=0.090

w2
1 ¼ 3:18,

p=0.075

w2
1 ¼ 5:53,

p=0.018

w2
1 ¼ 0:12,

p=0.734

w2
1 ¼ 0,

p=1

Latency to feed in a novel

environment

138.4 E1b 0.12 0 �0.112 136.39 138.10 140.39

[0.06,1) [0,1) [0,0.22]

w2
1 ¼ 4:15,

p=0.042

w2
1 ¼ 0:51,

p=0.477

w2
1 ¼ 0,

p=1

w2
1 ¼ 1:89,

p=0.169

Multiplicative

OADA

Object neophobia+asocial

learning

138.4 E1b 0.02 0 �0.247 �0.322 135.14 137.42 139.79

[0.05,1) [0,1) [0,0.20] w2
1 ¼ 2:61,

p=0.106

w2
1 ¼ 3:18,

p=0.075

w2
1 ¼ 5:47,

p=0.019

w2
1 ¼ 0:02,

p=0.898

w2
1 ¼ 0,

p=1

Latency to feed in a novel

environment

138.4 E1b 0.18 0 �0.117 135.86 137.69 140.37

[0.03,1) [0,1) [0,0.24]

w2
1 ¼ 4:68,

p=0.031

w2
1 ¼ 0:39,

p=0.531

w2
1 ¼ 0,

p=1

w2
1 ¼ 2:42,

p=0.120

ON=object neophobia; AL=asocial learning ability; LFNE=latency to feed in a novel environment.

a LRTs are for significant parameters dropped from the final model, and for non-significant parameters when added to the final model. In all cases the final model

included a social transmission effect for group 1 only. df=1 in all cases.
b The likelihood continued to increase towards the upper bound 1, though s=1 has a likelihood of zero, since the first acquisition would be impossible (e.g. see

Appendix D Fig. D.1).

Table 2

Model used Null model Null

model

AICc

Estimated social transmission effect (s)

95% CI LRT (H0:s0 =0)a

Estimated effects for individual-level variable

(LFNE) 95% CI LRT (H0:b=0)a

AICc including social

transmission

Additive TADA Latency to feed in a novel

environment

1175.56 0.16 (0.08, 0.43) w2
1 ¼ 15:54, po0.001 �0.23 (�0.39, �0.04) w2

1 ¼ 5:04, p=0.025 1162.24

Multiplicative

TADA

Latency to feed in a novel

environment

1175.56 0.17 (0.08, 0.33) w2
1 ¼ 16:75, po0.001 �0.16 (�0.36, �0.01) w2

1 ¼ 6:80, p=0.009 1161.02

LFNE=latency to feed in a novel environment.

a LRTs are for significant parameters dropped from the final model.
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consistent with a lower and upper limit on social transmission,
respectively (see Table 1).

In contrast to OADA, TADA provided evidence of social
transmission in all groups, with no evidence of differences
between them. This is probably the result of increased power
resulting from inclusion of time of acquisition data, which is
reflected in the narrower 95% confidence intervals for social
transmission (see Table 2). The findings of TADA and OADA are less
contradictory than they might appear at first. The TADA

confidence intervals for social transmission are within the OADA

confidence intervals for the effect for groups 1 and 2 and overlap
with the OADA confidence intervals for group 3. The only real
discrepancy is the finding from OADA, that social transmission
was significantly stronger in group 1 than it was in group 3.

The results concerning individual-level variables are qualita-
tively similar for both OADA and TADA. TADA suggested that an
individual’s latency to feed in a novel environment was the best
predictor of time of acquisition. In OADA this variable was also
found to be a good predictor of the order of acquisition, though a
model including object neophobia and asocial learning ability was
approximately as good. However, when the model included social
Please cite this article as: Hoppitt, W., et al., Detecting social t
j.jtbi.2010.01.004
transmission for group 1, none of these variables were significant
at the 5% level. In Boogert et al.’s original analysis, significant
differences in latency to solve were found between tasks
(not significant in TADA), but no other variable was found to be
significant (however, latency to feed in a novel environment was
found to be correlated with the latency to contact the task). The
critical differences between the TADA presented here and Boogert
et al.’s analysis are: (a) social transmission was accounted for;
(b) first-solvers were not excluded from the analysis;
(c) individuals not solving the task were modelled as non-solvers
rather than assigned a ‘ceiling’ value, which can distort an
analysis of latencies (Crawley, 2002); and (d) we compared all
possible subsets of variables, rather than using backward
selection, which can be misleading when predictors are correlated
(Weisberg, 1980).

The simulations presented above suggest that we should
prefer TADA to OADA because of its greater power provided we are
happy to assume that the baseline rate of acquisition is constant.
We can think of no reason to reject this assumption in Boogert
et al.’s diffusion experiment: the diffusions were conducted under
laboratory conditions, reducing the possibility for external
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/

dx.doi.org/10.1016/j.jtbi.2010.01.004
dx.doi.org/10.1016/j.jtbi.2010.01.004
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influences on the birds’ rate of acquisition. In addition, there were
multiple versions of each task available and each was replenished
as soon as it was solved, ensuring that informed individuals could
not block naı̈ve individuals from accessing the task. In any case,
the blocking of naı̈ve individuals would result in a decrease in the
power of TADA to detect an effect (see above), whilst the failure of
OADA to find a social transmission effect for groups 2 and 3 is
likely to be a result of the reduced power of the analysis relative
to TADA.

In summary, these new more powerful methods lead us to the
conclusion that there is strong evidence for social transmission in
all three groups of starlings, a finding starkly contrasting with that
of Boogert et al. (2008).
8. Discussion

The above simulations bring home the desirability of including
individual-level variables in an analysis to detect social transmis-
sion from diffusion data. The analyses establish that the inclusion
of individual-level variables both increases statistical power and
reduces Type I error rates. In addition, the sensitivity of the
diffusion analyses to network structure prompts us to recom-
mend that researchers use methods that can generate confidence
intervals for the strength of social transmission, rather than
relying on a rejection/acceptance procedure. For these reasons,
our OADA and refined TADA methods are preferable to established
randomisation approaches.

The simulations clearly show that TADA yields more statistical
power than OADA. Consequently, in choosing which approach to
utilise, we suggest that researchers use TADA unless there is good
reason to suppose that the baseline rate of acquisition has changed
over time. This might be the case, if, for example, the availability of a
resource necessary to acquire the trait has varied over time, in which
case the weaker assumption of proportional hazards is more
appropriate, and the OADA method should be deployed (also see
below). In principle, one could modify TADA to incorporate a non-
constant baseline rate of acquisition. However, the success of this
method would depend on the researcher choosing an appropriate
baseline function. OADA has the advantage that it is insensitive to
the shape of the baseline function.

The power of either method will depend critically on the
association measure used in the analysis. Both models are built on
the assumption that the rate of transmission between individuals
is proportional to the association between them, and, if our
interest is in testing for the presence or absence of social
transmission, an association measure should be chosen for which
this is likely to be true. We suggest that researchers utilise the
association measure that is most relevant to the experimental
context. For example, in the analysis of the diffusion of foraging
task solutions (Boogert et al., 2008) presented above, a measure of
association that reflects how often individuals feed together
might have been preferable to the general proximity measure that
was used. Note that the estimated effect of social transmission
depends on the scaling of the association measures used, so if the
effect of social transmission is compared between populations or
species, either the same association measure needs to be used, or
a case needs to be made that each association measure quantifies
opportunities for social learning on a common scale. Franz and
Nunn (2009) suggest an alterative approach: that different
measures of association, reflecting different social and individual
variables, can be used to fit separate NBDA’s in order to identify
which factors are important in determining diffusion dynamics. A
third possible future application of NBDA is to use order or time of
acquisition data to infer network structure. This could be of use in
cases where it is known or assumed that behaviour is transmitted
Please cite this article as: Hoppitt, W., et al., Detecting social t
j.jtbi.2010.01.004
socially, but social transmission-relevant association data is
difficult to acquire. For example, in humpback whales (Megaptera

novaeangliae) novel vocalisations are easily recorded, but associa-
tion data is likely to be difficult to obtain in high latitudes (Noad
et al., 2000).

There is clearly scope for a far more extensive investigation of
how network structure influences both the overall rate of social
transmission (Franz and Nunn, 2009) and the power of OADA and
TADA to detect it. The simulations presented here must be viewed
as a relatively crude first step. Nonetheless they are sufficient to
show that network structures that promote social transmission
(e.g. where all individuals are connected) are not necessarily the
same as those that make it more likely to be detected, especially
by OADA. Consequently, if researchers are to use these methods to
make comparisons of the levels of social transmission between
groups or species, which might have different network structures,
we recommend that they obtain power estimates or (preferably)
confidence intervals for the social transmission effect, rather than
relying solely on presence/absence arguments based on hypoth-
esis tests.

As discussed above, if all individuals have equal opportunity to
learn from each other, OADA will have no power to detect social
learning. In TADA, this situation can be modelled by setting all
associations to 1, in which case TADA is effectively reduced to a
diffusion curve analysis, since it is only sensitive to the
acceleratory effect that an increasing number of informed
individuals has on the rate of acquisition. However, in principle,
our extended version of TADA may constitute an improved
method for diffusion curve analysis (DCA), since it can statistically
control for individual-level variables, which might otherwise
obscure the underlying pattern.

The sensitivity of TADA to acceleration in the rate of acquisition
could also be seen as a weakness. It has been noted that DCA is
vulnerable to false positives if the latency to acquire a trait by
asocial learning has a unimodal distribution (Reader, 2004), and
TADA is also vulnerable under these circumstances. A unimodal
distribution of latencies can arise if the process of trait acquisition
has multiple steps, each of which is completed at a similar
constant rate (Kendal, 2003). For example, to solve a foraging task
an individual might first have to approach the task, and then
interact with it in an appropriate way. If each of these component
processes occurs at a similar constant rate, the overall latency to
solve the task asocially would have an approximately gamma
distribution with shape parameter k=2, which would in turn
result in an apparent acceleration in the rate of acquisition.

Though the models presented here, and the original TADA

presented by Franz and Nunn (2009), assume a linear relationship
between association and rate of social transmission, the methods
could be adapted to accommodate other models of social
transmission. For instance, the models could be refined to detect
social transmission from the spatial spread of a behavioural trait
through time (e.g. Fisher and Hinde, 1949). Here one merely needs
to propose a relationship between the rate of transmission and
the distance between individuals. If this is linear, or the distances
can be transformed to linearise the relationship, researchers can
use the above methods to fit the model.

The possibility that NBDA might allow us to infer something
about the mechanism of social transmission is an issue worth
pursuing. Given the fact that currently the ability to detect
specific social learning mechanisms is restricted to the experi-
mental laboratory, a method that could infer learning mechan-
isms from diffusion data could be extremely valuable. Above we
suggested that if social transmission operates indirectly through
social influences such as local enhancement, the multiplicative
model is likely to provide a better fit to the data. In contrast, we
suggest that if social transmission operates directly as an
ransmission in networks. J. Theor. Biol. (2010), doi:10.1016/
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independent learning process, such as imitation, the additive
model might provide a better fit. However, such findings should
only be taken as suggestive of mechanism at this stage, since
there are a number of issues that might complicate this apparent
dichotomy. For instance, if asocial and social learning ability
covary between individuals, the multiplicative model might fit
the data well even if the mechanism is additive in nature. Future
extensions of NBDA could investigate these issues by including
the effect of individual-level variables on the rate of social
transmission (s). There is also the possibility that a number of
social transmission processes, both direct and indirect, might
operate in parallel. Either of these processes might result in a lack
of resolution between multiplicative and additive models, as
observed in our reanalysis of Boogert et al.’s data.

There are further improvements that can be made to the
models in their current form. As it stands, if the models are fit to
multiple diffusions involving the same individuals, they assume
that the rate of acquisition by the same individual on different
tasks is independent, conditional on the variables included in the
model. In principle, this assumption could be dropped by
incorporating a random effect for individuals. However, this is
currently only implemented for the multiplicative OADA method,
using our multiCoxFit function (see ESM: Additional Information,
part A), which fits a Cox Proportional Hazards model with ‘frailty’
or ‘cluster’ terms (Therneau and Grambsch, 2001). A more general
model would allow the user to specify a correlation structure
between the rates of acquisition, for example, a spatial correlation
structure (cf. Pinheiro and Bates, 2000). In the spatial analysis
described above, this might allow us to control for the fact that
two proximate individuals acquire the trait at a similar time
because they have similar access to the resources necessary for
trait acquisition.

NBDA appears to be a relatively novel approach to the
statistical analysis of network data. Statistical methods have been
developed to investigate properties of flow through networks,
such as telecommunication interactions and traffic flow on roads
and the internet (Kolaczyk, 2009). In contrast to NBDA, such
models are more concerned with estimation of the strength of
connections in the network, rather than testing for the presence of
flow against an alternative hypothesis. In addition, such models
assume that flow involves the continued transfer of material
between nodes, rather than the switching of nodes from one state
to another that is a feature of NBDA. In this respect, NBDA bears
more resemblance with epidemiological models of the spread of a
disease (e.g. Keeling, 1999) or the spread of rumours and fashions
(Newman et al., 2006). However, such models assume that disease
or information spreads through connections in the network, and
usually aim to investigate theoretically the effect of network
structure on the dynamics of spread (e.g. Meyers et al., 2006). In
contrast, NBDA aims to test whether trait acquisition does spread
through a given network, given real data on network connections
and the pattern of trait acquisition. We are not aware of any
equivalent epidemiological models that allow statistical inference
about the transmission process based on an observed network
(see Kolaczyk, 2009, p. 279).

Nonetheless, existing network models (e.g. Newman et al.,
2006) could be used to investigate the effect of network structure
on the spread of a behavioural trait as a result of social
transmission. However, modifications might be necessary. For
example, epidemiological models usually assume individuals
move from ‘susceptible’ to ‘infected’ and then ‘recovered’
categories, sometimes then moving back to the ‘susceptible’
category (Watts, 1999. Whilst ‘naı̈ve’ and ‘informed’ categories
correspond closely to ‘susceptible’ and ‘infected’ categories, there
is no obvious role for a ‘recovered’ category in the diffusion of
many behavioural traits. A move back to the ‘susceptible’ category
Please cite this article as: Hoppitt, W., et al., Detecting social t
j.jtbi.2010.01.004
is only applicable if individuals forget the behavioural trait. In
addition, we have assumed that a behavioural trait can arise
spontaneously in an individual through asocial learning, a feature
which is absent from epidemiological models. Watts’ (2002)
model of information cascades in networks suggests another way
in which NBDA could be formulated. In his model, individuals
adopt a trait when they are connected to a threshold number of
individuals displaying that trait. NBDA could be modified to
investigate the factors that make an individual more likely to be
an early adopter (low threshold), or one of the early (medium
threshold) or late majority (high threshold).

Currently, methods for analysing diffusion data tend to assume
that individuals fall into one of two binary categories, ‘naı̈ve’ or
‘informed’, and that both social transmission and asocial learning
result in a transition from the naı̈ve to the informed state. Linked to
this is the assumption that all informed individuals demonstrate the
trait at the same rate once they are informed. OADA and TADA are no
exceptions to these assumptions. In many cases the reduction to
‘naı̈ve’ and ‘informed’ categories is a useful simplification that
enables us to model social transmission in a relatively straight-
forward manner. However, it is worth noting that there may be
some cases where this simplification is not appropriate, and that
both OADA and TADA might fail to adequately model the underlying
process. An individual’s rate of performance of a trait is, in reality, a
complex function of its own history of trait performance, observa-
tion and reward. Accordingly, we envisage that the process of
acquisition may sometimes be better captured by a learning rule,
such as Rescorla–Wagner (e.g. Kendal et al., 2009). However, this
would make modelling a diffusion a much more challenging task,
especially when data is limited.

Nonetheless, we envisage that the novel OADA method presented
here, as well as Franz and Nunn’s (2009) Network-Based Diffusion

Analysis and our TADA extensions of it, will provide a useful toolkit for
those wishing to detect and quantify social transmission in networks
of animals, in captivity and the field. We hope that these methods will
rejuvenate interest in collecting and analysing diffusion data, and add
statistical rigour to the study of social transmission and culture be it
in nonhuman animals or in humans.
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