
There are countless reports of innovations and novel 
behavior patterns spreading through both human and ani-
mal populations (Laland & Galef, 2009; Lefebvre 1995a, 
1995b; Reader, 2004; Rogers, 1995; Zentall & Galef, 
1988). The mathematical function describing the cumula-
tive number of individuals that have acquired a learned 
trait plotted against time is known as a diffusion curve. In 
recent years, researchers have expressed differing opin-
ions on whether the characteristic shape of a diffusion 
curve is potentially a reliable diagnostic of the form of 
learning underlying the spread of a learned trait. Rogers 
demonstrated that many thousands of cases of the spread 
of innovations through human populations exhibit a sig-
moidal, or S-shaped, cumulative adoption pattern. In the 
human innovation literature, such curves are generally as-
sumed to be the product of social learning processes, since 
individual adopters copy the behavior of others (Rogers, 
1995). In such cases, an S-shape is often thought to re-
sult because the probability of adoption is a function of 
the number of both naive and informed individuals (Boyd 
& Richerson, 1985; Henrich, 2001). Using mathemati-

cal models, Henrich argued that asocial (environmental) 
learning alone never produces S-shaped curves, and there-
fore that S-shaped dynamics must imply that social learn-
ing, based on biased cultural transmission, underlies the 
spread of the trait. This reasoning suggests that research-
ers only require a record of the cumulative number of in-
dividuals to have acquired a behavioral trait over time, in 
order to infer the presence or absence of social learning. 
Such data have the advantage that they are relatively easy 
to collect, as evidenced by numerous diffusion studies of 
this kind on humans and animals (see Rogers, 1995, and 
Reader, 2004, respectively, for reviews).

In contrast, the animal social learning literature is more 
equivocal on this issue. Although theoretical models of 
animal learning also predict S-shaped curves for socially 
transmitted information and r-shaped decelerating curves 
for asocially learned traits (Laland, Richerson, & Boyd, 
1993, 1996; Lefebvre, 1995a; Roper, 1986), various re-
searchers have doubted whether such patterns are reliably 
diagnostic. Roper (1986), Galef (1990), and Rendell and 
Whitehead (2001) all assumed that an accelerating curve 
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The effect of task structure on 
the diffusion curve with  

asocial learning

Where there are a number of steps required to solve a 
task, the cumulative diffusion curve may be S-shaped, even 
if individuals learn the tasks asocially (J. R. Kendal, 2002). 
For example, an extractive foraging task might require re-
moval of tree bark, followed by digging into the tree cortex, 
to retrieve insect prey. Similarly, in humans, the manufac-
ture of a composite tool might require learning separately 
to manufacture the component parts. Here, we investigate 
more fully the effect that task structure can have on the dif-
fusion curve in the absence of social learning.

Linear n-Step Task
We define a linear n-step task to be one in which the 

learner moves progressively from one state to another, 
starting in state 0, and finishing in state n, the latter cor-
responding to solution of the task (see Figure 1A). Tran-
sitions between states could represent movements in the 
environment (e.g., moving to the task), manipulations of 
the environment (e.g., removal of tree bark), or changes 
in an individual’s internal state (e.g., overcoming neopho-
bia). We model a linear n-step task as a continuous time 
Markov chain, where an individual moves from state k21 
to k at rate lk. Under purely asocial learning, individuals 
solve the task independently of one another, and so the ex-
pected diffusion curve is the cumulative density function 
(henceforth CDF) for the time (T ) taken to reach state n.

We begin with the special case in which n 5 1 (a task re-
quiring only one step to solution), which allows us to assess 
the effect of variation in the rate of learning. Appendix 1 (in 
the supplemental materials) establishes that the CDFs are 
r-shaped, and that the magnitude of the variance in asocial 
learning ability has little impact on the shape of this curve. 
To some extent, this alleviates Lefebvre’s (1995a) concern 
that variation in asocial learning ability might generate an 
S-shaped cumulative curve. However, matters become more 
complex for n . 1 (see Appendix 2, supplemental materi-
als). The general pattern is that as the number of steps in the 
task increases, the curve becomes more and more S-shaped. 
This effect is most pronounced when the steps occur at an 
equal rate (l), in which case the CDF for T follows that of 
the gamma distribution with rate parameter l and shape 
parameter n. Conversely, where one step (D) dominates the 
process (lD ,, lkD), the curve becomes more r-shaped, 
with the CDF for T converging on an exponential distribu-
tion with rate parameter lD (see Figure 2A).

In summary, a linear n-step task will result in an S-shaped 
diffusion curve as a result of entirely asocial learning, un-
less the rate of learning each step is highly asymmetric.

Resetting n-Step Task
We now consider tasks that can “reset” to their initial 

state (0) at any stage of the diffusion process (see Fig-
ure 1B); we term this a resetting n-step task. Resetting 
could occur if individuals leave the task, either because 
they “give up” or are displaced by another individual. This 

can only result from social learning processes, and Le
febvre (1995a) considered this possibility. However, other 
researchers have questioned, or cautioned against casual 
interpretation of, this claim (Laland & Kendal, 2003; 
Lefebvre, 1995a; Reader, 2004), suggesting that varia-
tion among asocial learners, or population structure, could 
generate accelerating functions through asocial processes 
alone.

Lefebvre (1995a, p. 236) suggested that “trial-and-error 
learning could be characterized by a cumulative S-shaped 
curve at the population level if individual variation in learn-
ing latency were normally distributed,” giving the false im-
pression that social interaction underpins the diffusion. J. R. 
Kendal (2002) and Reader (2004) suggested that directed 
social learning can result in a step-shaped function, with 
acceleratory component parts. For instance, a novel behav-
ior may spread more rapidly within than between family 
groups (Fritz, Bisenberger, & Kotrschal, 2000) and appear 
to generate step-like cumulative curves. Furthermore, La-
land and Kendal (2003) and Reader (2004) argued that, 
under other circumstances, social learning might lead to 
curves that either are, or may appear to be, decelerating—
for instance, where researchers fail to detect rare cases early 
in the diffusion.

Currently, formal analyses of the effect of variation in 
performance and population structure are lacking, lead-
ing to uncertainty as to the validity and seriousness of the 
aforementioned concerns. Conceivably, social learning 
processes may typically generate S-shaped curves, and 
asocial learning processes lead to r-shaped curves, in spite 
of the impact of these factors, which would lead to the 
conclusion that diffusion curve analyses have been pre-
maturely dismissed. Conversely, these concerns may be 
validated by formal theory, in which case some interpreta-
tions common in the human innovation literature would be 
challenged (e.g., Henrich, 2001). Moreover, such valida-
tion would naturally lead researchers to ask whether the 
concerns apply equally to other diagnostic tools currently 
being used to detect social learning using diffusion data. 
One newly developed approach is network-based diffu-
sion analysis (NBDA; Franz & Nunn, 2009, 2010; Hop-
pitt, Boogert, & Laland, 2010), which endeavors to isolate 
social learning by monitoring whether information flows 
along pathways of association in a social network.

Below, we develop simple statistical models to address 
these issues. We begin by deploying a continuous time 
Markov chain model to investigate the shape of the cu-
mulative adoption curve for a task that requires asocial 
learners to progress through n linear steps to reach the 
solution, and where individuals vary according to their 
performance. We go on to consider the effects of individu-
als abandoning the task—for instance, if they find the task 
too difficult, or are displaced by other individuals—as 
well as the impact of reinforcement for learning subgoals, 
and the effect of neophobia diminishing with time. We 
then move on to consider the same factors among indi-
viduals who acquire the task through social learning. We 
end by discussing the likely significance of these factors 
for diffusion curve and NBDA.
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The Effects of Subgoal Learning
If we assume that learning occurs only through direct 

reinforcement, and that reinforcement occurs only when 
the task is solved, the resetting n-step task described 
above is an appropriate model for the time to first solve 
the task by asocial learning. However, individuals might 
be sensitive to reaching subgoals, and are intrinsically 
reinforced for doing so. This would mean that reaching 
state k increases the future rate at which an individual 
moves from state k21 to k (lk). To model this, we assume 
that learning occurs by a Rescorla–Wagner (1972) learn-
ing rule, where a transition to state k changes the future 
transition rate lk, as

	 lk 5 a(lmax,k 2 lk),	 (1)

where lmax,k is the maximum transition rate lk for fully 
“informed” individuals, and a determines the rate at 
which learning occurs.

Since this model is difficult to solve analytically, we 
used simulations to investigate the effects of subgoal 
learning on diffusion curves. We took n 5 4, lk(0) 5 1, 
lr 5 4, and varied the value of a from 0, 0.1, 0.2, . . . , 1 
and lmax,k as 1, 4, 10, and 20. Simulations proceeded as 
follows.

1. Set k 5 0, l1 5 l2 5 l3 5 l4 5 1, and t 5 0.

2. Simulate two random numbers, P from an expo-
nential distribution with rate lk11 and R from an ex-
ponential distribution with rate lr 5 1.

3. If P # R, increment t by P, k by 1, and then lk by 
a(lmax,k 2 lk).

4. If P . R, increment t by R and set k 5 0.

5. If k 5 4, stop and store the value of t, else return 
to Step 2.

We ran 10,000 simulations for each combination of pa-
rameter values. The results (see Figure 3) reveal that as the 
rate of subgoal learning, a, and the resetting rate, lmax,k, 

could cause resetting if the task is likely to be lost (e.g., 
a prey item runs away, a fruit is stolen by another indi-
vidual), meaning an individual has to find a new task item, 
or if the nature of the task means it switches back to its 
initial state when left. If the task can usually be returned 
to in the same state it was left in, the linear n-step task 
model remains appropriate. Another way in which reset-
ting could occur is if an incorrect manipulation resulted 
in the task object being ruined (e.g., a tool is damaged 
during its manufacture; Holzhaider, Hunt, & Gray, 2010), 
meaning that the individual has to seek a new task object 
in its initial state.

Here, we model a resetting n-step task as a continuous-
time Markov chain similar to that used for the linear case, 
with an extra set of transitions from states 0 . k . n to state 
k 5 0, which occur at rate lr (see Figure 1B). This model as-
sumes that the rate at which individuals move to a state, k, is 
not influenced if they have already reached state k at a pre-
vious time in the diffusion. This assumes that no learning 
occurs before an individual’s first final solution of the task, 
which is consistent with the idea that learning only occurs 
through direct reinforcement occurring through solution 
of the task. Later, we go on to consider how other learning 
processes might alter the process. The analytical deriva-
tion of the results for the resetting n-step task are given in 
Appendix 3 (supplemental materials). The general pattern 
is that, as the rate of resetting, lr, increases, the diffusion 
curve becomes more r-shaped, with the CDF for T converg-
ing on that of the exponential distribution (see Figure 2B). 
Note that the linear n-step task is a special case of the more 
general, resetting n-step task with lr 5 0.

This analysis suggests that the expected shape of a 
diffusion curve resulting from asocial learning is highly 
influenced by the dynamics of the task-solving process, 
which might depend not only on the nature of the task 
itself but also on the context in which it is solved (e.g., the 
likelihood of being displaced by a competitor, as seen in 
the study of Lemur catta by R. L. Kendal et al., 2010).

Task solved
Linear 3-Step TaskA

Resetting 3-Step TaskB

State 0
λ1

State 1
λ2

State 2 State 3

Task solved

State 3

λ3

State 0
λ1

State 1
λ2

State 2
λ3

λr

λr

Figure 1. Examples of Markov chains used to model n-step tasks. (A) A linear 3-step task. 
(B) A resetting 3-step task. Arrows represent transitions between states, with lk (k 5 1, 2, . . . , 
n21, n) denoting the rate of transition from state k21 to state k, and lr denoting the resetting 
rate, which is the rate of transition from state i to state 0, where i  0.



246        Hoppitt, Kandler, Kendal, and Laland

task more, increasing some or all of the transition rates 
lk(t) between task steps. Here we consider a simple 1-step 
task in which the rate of transition from naive to informed 
is a function of time, l1(t). We can derive the CDF for the 
process by solving the equation

	
λ1 1

( )
( )

( )
,t

F t
F t

= ′
− 	

(2)

where F(t) is the CDF for the time to solve, T, and F(0) 5 0 
(Cox & Oakes, 1984). We first consider a linear increase 
in the transition rate

	 l1(t) 5 linitial 1 gt,	 (3)

where linitial is the initial transition rate and g is the rate at 
which it increases over time (see Figure 4A). This results 
in the CDF

	 F(t) 5 1 2 exp(2linitialt 2 gt2)	 (4)

(see Figure 4B). Alternatively, the effects of neophobia 
could die away to a baseline rate of transition, for which 
an exponential model seems appropriate:

	 l1(t) 5 lbaseline 2wexp(2ρt),	 (5)

where lbaseline is the baseline transition rate in the absence 
of neophobia, w is the reduction in rate due to neophobia 
at t 5 0, and r determines the rate at which neophobia dies 
away (see Figure 4A). This results in the CDF

	
F t t t( ) exp exp( )= − − − − +1 λ ω

ρ ρ ω
ρbaseline 	

(6)

(see Figure 4B). As can be seen in Figure 4, both ap-
proaches to modeling neophobia result in an S-shaped 
diffusion curve.

The Influence of Social Learning 
on Diffusion Curves

We now consider how factors such as task structure af-
fect the diffusion curve for a socially transmitted trait. We 
model social learning as operating on a varying number 
of steps, which we feel is likely to reflect the diversity of 
social learning mechanisms in nature. For example, local 
enhancement operates only to attract an individual to the 
task, but observers learn the task by asocial means once 
they are there. This is likely to result in an increase in rate 
for only one step. In contrast, some processes, such as pro-
duction imitation (see Byrne, 2002), result in learning of 
the entire motor pattern necessary to solve the task. This 
might result in a simultaneous increase in all, most, or just 
the later steps associated with a task. We also envisage that 
in reality a number of “simple” social processes might op-
erate in concert to influence an intermediate number of 
steps. We assumed that, for each step affected, the rate of 
transition was a linear function of the number of demon-
strators in the population; that is,

	 lk(t) 5 1 1 sd(t),	 (7)

where d(t) is the proportion of demonstrators at time t, and 
s is the additive effect each additional demonstrator has on 
the rate of transition to Step k.

increase, the diffusion curve becomes more S-shaped, 
becoming more similar to the diffusion curve for a linear 
4-step task. Indeed, the curve will be identical to the lin-
ear 4-step task when a 5 1 and lmax,k 5 . The analysis 
indicates that even when we know the resetting rate is high 
for a task, we might still get an S-shaped diffusion curve 
through asocial learning.

Reduction in Neophobia
Another asocial process that might plausibly influence 

the shape of the diffusion curve is a reduction in neopho-
bia over time, causing individuals to interact with a novel 
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Figure 2. Analytical diffusion curves for asocial learning of a 
4-step task. (A) Linear 4-step task, showing the effects of a single 
step, which we denote D, increasingly dominating the process. The 
step ratio gives the ratio of the expected time to complete step D 
to the expected time to complete one of the other steps (fixed to 
be equal). (B) Resetting 4-step task, showing the effects of increas-
ing the resetting rate. All lk are taken to be equal, with resetting 
ratio 5 lr/lk. For both panels A and B, time is scaled such that 
the proportion informed 5 .5 at time 5 4.
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5. If min{P} . min{R} increment t by min{R} and 
set z[ j] 5 0, where R[ j] 5 min{R}.
6. For all z[i] 5 n, record t as the time of solving for 
individual i and remove from the simulation.
7. Update each lk according to the social learning pro-
cess being modeled (see below). Return to Step 3.

We ran the model for a 1-step task, a linear 4-step task 
(lr 5 0), and a resetting 4-step task (lr 5 4). We found 
that in all cases, regardless of which social learning pro-
cess was modeled, social learning caused the diffusion 
curve to become more S-shaped, as a result of the effect 
of an increasing number of demonstrators throughout the 
diffusion. Although the curves became more S-shaped 
as s increased, the strongest effect on shape was the 
number of steps on which social learning operated (see 
Figure 5).

To investigate the influence of social learning on the 
diffusion curves, we used simulations, since in most cases 
analytical results are difficult to obtain. We simulated 
a fixed population size of 100 individuals for tasks of 
n steps with a resetting rate of lr. To do this, we used the 
following procedure.

1. Create a vector, z, of length 100 with all elements 
equal to 0. This represents the state of each individual 
in the population with regard to the task.

2. Set lk 5 1 for k 5 1, 2, . . . , n.

3. For each individual, i, draw two random numbers, 
P[i] from an exponential distribution with rate lz[i]11, 
and R[i] from an exponential distribution with rate lr.

4. If min{P} # min{R}, increment t by min{P} and 
increment z[ j] by 1, where P[ j] 5 min{P}.
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Figure 3. Results of simulations investigating the effect of subgoal learning on the shape of the asocial diffusion curve for a reset-
ting 4-step task. The maximum effect of subgoal learning (lmax) increases down the y-axis, and the rate at which learning occurs (a) 
increases along the x-axis. See the main text for details of the simulations.
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where α(t) 5 υd(t) and 0 # υ # 1. This means that an in-
dividual’s ability to recognize a subgoal was a linear func-
tion of the number of demonstrators in the population.

Social Learning of Subgoals
Another mechanism postulated to account for cases of 

social learning is emulation, whereby observers attempt to 
re-create the results of the demonstrator’s behavior (Toma-
sello, 1990). One way in which emulation might work is by 
allowing observers to recognize subgoals which they would 
otherwise not be able to recognize when they achieve them, 
thus reinforcing the behavior leading to that subgoal (note 
that, as with asocial subgoal learning, this process could 
operate only on a resetting task). We simulated this process 
as described above, but we also tracked each individual, i’s, 
rate of transition to state k, lk,i. We incremented this when 
individual i reached state k at time t, according to

	 lk,i 5 a(t)(lmax 2 lk,i),	 (8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

Ra
te

Exponential decay
Linear decay

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Ex
p

ec
te

d
 P

ro
p

o
rt

io
n

 In
fo

rm
ed

Exponential decay
Linear decay

A

B

Figure 4. Analytical results for models of the influence of neo-
phobia on a 1-step task. (A) The rate of task solution changes over 
time for each model. (B) The resulting diffusion curve for each 
model of neophobia.
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Figure 5. Results of simulations investigating the effects of so-
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were scaled such that the proportion informed 5 .5 at time 5 1. 
Social learning is modeled according to Equation 7.
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tive null hypothesis. Unfortunately, our analysis suggests 
that such attempts are likely to be misleading, since pro-
cesses such as neophobia and subgoal reinforcement are 
likely to make the diffusion curve more S-shaped, result-
ing in false positive reports of social learning.

In our analysis, we suggest that different social learn-
ing mechanisms are likely to affect diffusion dynamics in 
different ways, by altering the different rates of transition 
within the task or by allowing an individual to learn about 
task subgoals. However, we find that the overall effect of 
different psychological mechanisms on the diffusion curve 
is always qualitatively similar: All social learning processes 
make the diffusion curve more S-shaped. Therefore, we 
suggest that it is unlikely that social learning mechanism 
can be inferred from a diffusion curve alone, even if a 
researcher were able to uncover the shape of the diffusion 
curve in purely asocial conditions. However, our models 
suggest that one might study social learning mechanism 
from detailed diffusion data in which each individual’s 
movements between states (e.g., naive to knowledgeable/
at proximity or distance from a task) is tracked, and mod-
eled as a function of the presence of demonstrators (e.g., 
J. R. Kendal, R. L. Kendal, & Laland, 2007).

Our findings reinforce the view that diffusion curve 
analysis is not a reliable way of detecting social transmis-
sion (Reader, 2004), and raise questions about whether the 
S-shaped curves reported for the spread of human innova-
tions (Rogers, 1995) can legitimately be viewed as result-
ing from biased cultural transmission (Henrich, 2001). The 
models presented here make the assumption that popula-
tions are “well-mixed,” in that all individuals are equally 
likely to interact with each other; this assumption is also 
made by standard diffusion curve analysis.1 Other analy-
ses suggest that violations of this assumption can also re-
sult in inflated Type I errors for social learning and call 
for the need for methods that take this heterogeneity into 
account (Franz & Nunn, 2009). Our analyses suggest that 
even if the “well-mixed” assumption is upheld, the use of 
the shape of diffusion curves to draw inferences about the 
underlying learning processes is unreliable, and we caution 
against this practice. In our judgment, alternative meth-
ods for detecting social learning, such as the option-bias 
method (R. L. Kendal et al., 2010; R. L. Kendal, J. R. Ken-
dal, Hoppitt, & Laland, 2009), analyses of the relationship 
between behavioral similarity and measures of association 
(Matthews, 2009; Whitehead, 2009), analyses of the spa-
tial spread of a trait (Lefebvre, 1995b), and NBDA (Franz 
& Nunn, 2009, 2010; Hoppitt et al., 2010), offer greater 
promise (see Kendal, Galef, & van Schaik, 2010, for a 
summary of methods). However, our analysis also sug-
gests that other methods of analyzing diffusion data, such 
as NBDA, might also be vulnerable to Type I errors, unless 
one takes the possible effects of task structure, neophobia, 
and the like into account, an issue to which we now turn.

Implications for NBDA

Alternative methods are beginning to emerge for de-
tecting social transmission using diffusion data and are re-

We found that, as with other types of social learn-
ing, emulation made the curve for a resetting task more 
S-shaped (see Figure 6). Here, the equivalent linear n-step 
task (with lr 5 0) sets an upper limit on how S-shaped the 
curve could be, corresponding to lmax 5  and υ 5 1. This 
indicates that the change in curvature due to emulation 
might reflect the number of subgoals the observer is able 
to learn from the demonstrators’ behavior.

Implications for  
Diffusion Curve Analysis

Taken together, our results strongly suggest that, even 
with prior knowledge of the nature of the task or innova-
tion, it would be hard for researchers to infer whether a 
diffusion curve resulted from asocial or social processes. 
Even a 1-step task acquired through asocial learning, which 
our analysis suggests would otherwise exhibit an r-shaped 
cumulative diffusion curve, might have an S-shaped curve 
if there is a reduction in neophobia of the task over time, or 
some other process with an equivalent effect. Likewise, a 
frequently resetting n-step task will also have an S-shaped 
asocial diffusion curve, if attaining subgoals reinforces 
each individual’s behavior.

Social learning can influence the shape of a diffusion 
curve, typically generating or enhancing S-shaped pat-
terns. However, a social influence will remain difficult to 
detect in a single diffusion curve unless researchers know 
what the expected diffusion curve would be under asocial 
learning alone. In principle, researchers could make the 
case that a specific task has a relatively high rate of reset-
ting, and that, consequently, the asocial diffusion curve 
would be r-shaped, or might attempt to quantify the maxi-
mum number of steps involved in the task as a conserva-
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Figure 6. Results of simulations investigating the effects of emu-
lation on the diffusion curve for a resetting 4-step task. Simulated 
asocial diffusion curves for resetting and linear 4-step tasks are 
shown for comparison. See main text for the meaning of param-
eters. Simulations are for populations of 1,000 individuals. Emu-
lation is modeled according to Equation 7.
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l0(t), can be fitted to the data, allowing one to control for 
such effects in detecting social transmission. Our analysis 
above indicates that the obvious candidate is the gamma 
distribution, for which the CDF becomes S-shaped as the 
shape parameter increases. We would expect the gamma 
distribution to be exact for a linear n-step task, with equal 
step transition rates, in the absence of neophobia, and so 
on. Therefore, instead of fitting a single parameter for the 
constant baseline rate, we fit two parameters determining 
the shape of the baseline rate function. We find that this 
modified version of TADA has an appropriate Type I error 
rate and is still able to detect social learning from data 
simulated from our n-step task model (see Appendix 5, 
supplemental materials).

Conclusion

The primary function of the mathematical models pre-
sented here was to assess whether the shape of the dif-
fusion curve can be used as a diagnostic tool for detect-
ing social learning, as has often been assumed in both 
the human and animal literature (see, e.g., Rogers, 1995; 
Roper, 1986). We conclude that, even if the assumption of 
a well-mixed population with no spatial heterogeneity in 
resources is accepted, the use of diffusion curves remains 
problematic, since S-shaped curves can arise through a 
number of plausible asocial processes. We also conclude 
that alternative methods for detecting social learning from 
diffusion data, such as NBDA, need to be formulated in a 
way that controls for this effect.

Author Note

W.H. was supported by BBSRC Grant BB/D015812/1, A.K. by a Lev
erhulme Trust Early Career Fellowship, J.R.K. by an RCUK Research 
Fellowship, and K.N.L. by BBSRC Grants BB/C005430/1 and BB/
D015812/1. Correspondence concerning this article should be addressed 
to W. Hoppitt, School of Biology, St Andrews University, St Andrews 
KY16 9TS, Scotland (e-mail: wjeh1@st-andrews.ac.uk).

References

Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary pro-
cess. Chicago: University of Chicago Press.

Byrne, R. W. (2002). Imitation of novel complex actions: What does 
the evidence from animals mean? In P. J. B. Slater, J. S. Rosenblatt, 
C. T. Snowdon, & T. J. Roper (Eds.), Advances in the study of behavior 
(Vol. 31, pp. 77-105). San Diego: Academic Press.

Cox, D. R., & Oakes, D. (1984). Analysis of survival data. London: 
Chapman & Hall.

Franz, M., & Nunn, C. L. (2009). Network-based diffusion analysis: 
A new method for detecting social learning. Proceedings of the Royal 
Society B, 276, 1829-1836.

Franz, M., & Nunn, C. L. (2010). Investigating the impact of observa-
tion errors on the statistical performance of network-based diffusion 
analysis. Learning & Behavior, 38, 235-242.

Fritz, J., Bisenberger, A., & Kotrschal, K. (2000). Stimulus en-
hancement in greylag geese: Socially mediated learning of an operant 
task. Animal Behaviour, 59, 1119-1125.

Galef, B. G., Jr. (1990). Tradition in animals: Field observations and 
laboratory analyses. In M. Bekoff & D. Jamieson (Eds.), Readings in 
animal cognition (pp. 91-105). Cambridge, MA: MIT Press.

Henrich, J. (2001). Cultural transmission and the diffusion of innova-
tions: Adoption dynamics indicate that biased cultural transmission is 
the predominate force in behavioral change and much of sociocultural 
evolution. American Anthropologist, 103, 992-1013.

viewed in this collection. These methods include NBDA, 
a method initially developed by Franz and Nunn (2009) 
and extended by Hoppitt et al. (2010). NBDA infers so-
cial transmission if the spread of a diffusion follows the 
pattern of association between individuals, known as the 
social network. Franz and Nunn’s method takes as data 
the times at which individuals first acquire the behavioral 
trait in question, and fits a model of social learning that 
assumes that the rate of transmission of behavior between 
two individuals is proportional to the rate of association 
between them.

Hoppitt et al. (2010) introduced a variant of NBDA that 
makes the same assumptions about social transmission 
but uses only the order in which individuals acquire the 
behavioral trait. Hoppitt et al. called their version “order 
of acquisition diffusion analysis” (OADA) and contrasted 
it with Franz and Nunn’s “time of acquisition diffusion 
analysis” (TADA). Both methods fit a model that includes 
social learning, and compare it with a model with only 
asocial learning, inferring social learning if the former 
provides a better fit to the data. Hoppitt et al. found that 
TADA had better power to detect an effect when the as-
sumptions of the model were upheld, but that it was vul-
nerable to false positives if there was a systematic increase 
in the baseline rate of acquisition, absent social trans-
mission. In contrast, OADA was not vulnerable to false 
positives under these conditions; the reason for this can 
be understood by comparing both models in a common 
framework. Both approaches can fit a model including 
both asocial and social learning of the form

	
λ λi i i j j

j

N

t t z t s a z t s( ) ( ) ( ) ( ) ( ),= −  + −
=

∑0
1

1 1








 ,

	
(9)

where li(t) is the rate at which individual i acquires the 
trait; l0(t) is the baseline rate of acquisition, in the absence 
of social transmission; zi(t) gives the status of individual i 
(1 5 informed; 0 5 naive); s is a fitted parameter estimat-
ing the relative strength of social transmission, ranging 
from 0 (all learning asocial) to 1 (all learning is social 
transmission); and ai, j is the association or network con-
nection between individuals i and j, reflecting the rate of 
social transmission from j to i.2 The model is fitted to the 
data using maximum likelihood, and social transmission 
is inferred if a model with s . 0 is significantly better than 
a model with s 5 0. The key difference between the two 
methods is that TADA requires that the baseline rate of 
acquisition l0(t) be specified or fitted to the data, whereas 
OADA merely assumes the baseline rate to be the same for 
all individuals. The current versions of TADA (Franz & 
Nunn, 2009; Hoppitt et al., 2010) assume that the baseline 
rate is constant: l0(t) 5 l0. In the context of this article, 
this assumption corresponds to a 1-step task, or approxi-
mately to a resetting n-step task with a high rate of re-
setting without processes such as neophobia or subgoal 
learning. This means that TADA is vulnerable in the same 
circumstances described above as diffusion curve analysis 
(see simulations in Appendix 5, supplemental materials).

In Appendix 4 (supplemental materials), we modify 
TADA so that an inhomogeneous baseline rate function, 



Effect of Task Structure on Diffusion Dynamics        251

Reader, S. M., & Laland, K. N. (2000). Diffusion of foraging innova-
tion in the guppy. Animal Behaviour, 60, 175-180.

Rendell, L. E., & Whitehead, H. (2001). Culture in whales and dol-
phins. Behavioral & Brain Sciences, 24, 309-382.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian 
conditioning: Variations in the effectiveness of reinforcement and 
nonreinforcement. In A. H. Black & W. F. Prokasy, Classical con-
ditioning II: Current research and theory (pp. 64-99). New York: 
Appleton-Century-Crofts.

Rogers, E. (1995). Diffusion of innovations (4th ed.). New York: Free 
Press.

Roper, T. J. (1986). Cultural evolution of feeding behaviour in animals. 
Science Progress, 70, 571-583.

Tomasello, M. (1990). Cultural transmission in the tool use and com-
municatory signalling of chimpanzees? In S. T. Parker & K. R. Gibson 
(Eds.), “Language” and intelligence in monkeys and apes: Compara-
tive developmental perspectives (pp. 274-311). New York: Cambridge 
University Press.

Whitehead, H. (2009). How might we study culture? A perspective 
from the ocean. In K. N. Laland & B. G. Galef, Jr. (Eds.), The question 
of animal culture. Cambridge, MA: Harvard University Press.

Young, H. P. (2008). Innovation diffusion in heterogeneous populations: 
Contagion, social influence, and social learning. Available at www 
.economics.ox.ac.uk/Research/wp/pdf/paper303.pdf.

Zentall, T. R., & Galef, B. G., Jr. (Eds.) (1988). Social learning: 
Psychological and biological perspectives. Hillsdale, NJ: Erlbaum.

Notes

1. In some cases, heterogeneity has been incorporated on the basis of 
the assumption that individuals differ in their propensity to adopt a novel 
trait (Rogers, 1995; Young, 2008), but the population is still assumed to 
be “well mixed.”

2. Hoppitt et al. (2010) also allowed inclusion of variables that model 
differences in asocial learning rate between individuals. Here, these are 
excluded for clarity. Franz and Nunn (2009) used a different parameter-
ization; here, we use Hoppitt et al.’s (2010) notation to facilitate compari-
son of TADA and OADA.

SUPPLEMENTAL MATERIALS

Five appendixes containing additional analyses may be downloaded 
from http://lb.psychonomic-journals.org/content/supplemental.

(Manuscript received March 11, 2010; 
accepted for publication April 28, 2010.)

Holzhaider, J. C., Hunt, G. R., & Gray, R. D. (2010). Social learning 
in New Caledonian crows. Learning & Behavior, 38, 206-219.

Hoppitt, W., Boogert, N. J., & Laland, K. N. (2010). Detecting social 
transmission in networks. Journal of Theoretical Biology, 263, 544-
555. doi:10.1016/j.jtbi.2010.01.004

Kendal, J. R. (2002). An investigation into social learning: Mechanisms, 
diffusion dynamics, functions and evolutionary consequences. Unpub-
lished doctoral thesis, University of Cambridge, Cambridge, England.

Kendal, J. R., Kendal, R. L., & Laland, K. N. (2007). Quantify-
ing and modelling social learning processes in monkey populations. 
International Journal of Psychology & Psychological Therapy, 7, 
123-138.

Kendal, R. L., Custance, D. M., Kendal, J. R., Vale, G., Stoin-
ski, T. S., Rakotomalala, N. L., & Rasamimanana, H. (2010). 
Evidence for social learning in wild lemurs (Lemur catta). Learning 
& Behavior, 38, 220-234.

Kendal, R. L., Galef, B. G., Jr., & van Schaik, C. P. (2010). Social 
learning research outside the laboratory: How and why? Learning & 
Behavior, 38, 187-194.

Kendal, R. L., Kendal, J. R., Hoppitt, W., & Laland, K. N. (2009). 
Identifying social learning in animal populations: A new “option-bias” 
method. PLoS ONE, 4, e6541. doi:10.1371/journal.pone.0006541

Laland, K. N., & Galef, B. G., Jr. (Eds.) (2009). The question of ani-
mal culture. Cambridge, MA: Harvard University Press.

Laland, K. N., & Kendal, J. R. (2003). What the models say about 
social learning. In D. Fragaszy & S. Perry (Eds.), The biology of tra-
ditions: Models and evidence (pp. 33-55). Cambridge: Cambridge 
University Press.

Laland, K. N., Richerson, P. J., & Boyd, R. (1993). Animal social learn-
ing: Toward a new theoretical approach. In Perspectives in ethology: 
Behavior and evolution (Vol. 10, pp. 249-277). New York: Plenum.

Laland, K. N., Richerson, P. J., & Boyd, R. (1996). Developing a 
theory of animal social learning. In C. M. Heyes & B. G. Galef, Jr. 
(Eds.), Social learning in animals: The roots of culture (pp. 129-154). 
San Diego: Academic Press.

Lefebvre, L. (1995a). Culturally-transmitted feeding behaviour in pri-
mates: Evidence for accelerating learning rates. Primates, 36, 227-
239.

Lefebvre, L. (1995b). The opening of milk bottles by birds: Evidence 
for accelerating learning rates, but against the wave-of-advance model 
of cultural transmission. Behavioural Processes, 34, 43-53.

Matthews, L. J. (2009). Intragroup behavioral variation in white-
fronted capuchin monkeys (Cebus albifrons): Mixed evidence for 
social learning inferred from new and established analytical methods. 
Behaviour, 146, 295-324.

Reader, S. M. (2004). Distinguishing social and asocial learning using 
diffusion dynamics. Learning & Behavior, 32, 90-104.


