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Detecting Social Learning Using Networks: A Users Guide
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Controversy over claims of cultures in nonhuman primates and other animals has led to a call for
quantitative methods that are able to infer social learning from freely interacting groups of animals.
Network-based diffusion analysis (NBDA) is such a method that infers social transmission of a
behavioral trait when the pattern of acquisition follows the social network. As, relative to other
animals, primates may be unusual in their heavy reliance on social learning, with learning frequently
directed along pathways of association; in this study, we draw attention to the significance of this
method for primatologists. We provide a ‘‘users guide’’ to NBDA methodology, discussing the choice of
NBDA model and social network, and suggest model selection procedures. We also present the results of
simulations that suggest that NBDA works well even when the assumptions of the underlying model
are violated. Am. J. Primatol. 72:1–11, 2011. r 2011 Wiley-Liss, Inc.
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INTRODUCTION

‘‘Social learning’’ is defined as learning that is
influenced by observation of, or interaction with, a
conspecific or its products. Most research is focused
on social learning that results in social transmission:
the spread of a behavioral trait from one individual
to another. Such social learning may be particularly
important in nonhuman primates, with a large
number of cases being documented in which social
learning and transmission is either directly observed
or inferred to have occurred in the recent past on the
basis of observed inter- or intraspecific variation
[Dindo et al., 2009; Horner et al., 2010; Kendal et al.,
2004, 2009, 2010a; Mcgrew et al., 1979; Perry &
Manson, 2003; Sussmann, 1977; van Schaik et al.,
2003; Whiten et al., 1999, 2005, 2007]. These
include the famous case of the spread of potato and
wheat washing through the Japanese macaques of
Koshima Islet [Kawai, 1965], which led to the study
of the spread, or ‘‘diffusion,’’ of numerous other
behavioral traits in natural populations of primates
[Lefebvre, 1995].

In recent years, interest in social learning has
grown dramatically, in part inspired by claims of
cultures in apes [McGrew, 1998; van Schaik et al.,
2003; Whiten et al., 1999] and monkeys [Perry &
Manson, 2003]. In each case, local differences in
behavior are thought to arise as a result of different
behavioral innovations spreading through different
populations. Laboratory studies have revealed that a
capacity for social learning is widespread in primates
[Whiten, 2000; Whiten & Mesoudi, 2008], as it is

throughout both vertebrate and invertebrate taxa
[Galef & Laland, 2005; Hoppitt & Laland, 2008;
Laland & Galef, 2009], so such explanations are
highly plausible. However, in each case, this expla-
nation remains controversial, since differences in
behavior could be caused by genetic differences or
ecological differences between populations [Laland &
Hoppitt, 2003; Laland & Janik, 2006; Langergraber
et al., 2010]. Consequently, researchers in the field
of social learning are calling for quantitative meth-
ods that are able to infer social learning from
freely interacting groups of animals, both in the
wild and in captive but naturalistic settings [Kendal
et al., 2010b].

One type of data that has been widely used to
infer social transmission in groups of individuals is
diffusion data, where the spread of a behavioral trait
between individuals is monitored over time. The
traditional method, diffusion curve analysis, plotted
the cumulative number of individuals to have
exhibited the behavioral trait against time, produ-
cing a ‘‘diffusion curve’’ [e.g. Lefebvre, 1995]. The
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assumption was that if asocial learning alone were
responsible for trait acquisition, this would occur at a
constant rate and one would observe an r-shaped
diffusion curve. Conversely, if social transmission
were occurring, the rate of acquisition should
increase with time as the number of informed
individuals to learn from increased, resulting in an
acceleratory curve, which will become S-shaped if the
behavior spreads throughout the whole population
being monitored. This method has been used
extensively both in humans and nonhuman animals
[Henrich, 2001; Reader, 2004; Rogers, 1995; Roper,
1986]. For example, Lefebvre [1995] used this
method to analyze 21 diffusions of foraging innova-
tions from the primate literature, including
cases from Japanese macaques (e.g. fish-eating,
[Watanabe, 1989]), vervet monkeys (acacia-pod dip-
ping, [Hauser, 1988]), and chimpanzees (mango and
lemon eating, [Takahata et al., 1986; Takasaki,
1983]. Lefevbre found an overall trend for accelerat-
ing learning rates, consistent with models of social
transmission.

However, there are good reasons to doubt that
an S-shaped diffusion curve is diagnostic of social
learning [Hoppitt et al., 2010b; Reader, 2004]. First,
a number of researchers have suggested that social
learning might not necessarily result in an S-shaped
curve, if, as is likely to be the case, the population is
structured into subgroups. For instance, Kendal
[2003] and Reader [2004] suggest that directed social
learning can result in a step-shaped function, with
acceleratory component parts, if the trait spreads
more rapidly through closely connected subgroups,
such as family units [e.g. Fritz et al., 2000].
Furthermore, differences in the rate of acquisition
between different sub-sections of the population
might act to obscure any underlying pattern; for
example, a strong sex difference might result in a
bimodal distribution of latencies to acquire the trait
[Reader, 2004].

Another concern is that S-shaped diffusion
curves might arise as a result of purely asocial
processes, which would cause false positives for social
transmission when using diffusion curve analysis.
Lefebvre [1995, p 326] suggests that ‘‘trial-and-error
learning could be characterized by a cumulative
S-shaped curve at the population level if individual
variation in learning latency were normally distrib-
uted.’’ However, in their mathematical analysis,
Hoppitt et al. [2010b] find that S-shaped curves are
unlikely to arise as a result of individual variation in
learning ability. Nonetheless, Hoppitt et al. detect
reasons to be concerned that S-shaped curves might
arise through asocial learning. One such case arises
if an individual must move through a number of
stages in order to acquire a trait. For example, there
may be a number of different steps required to solve
a foraging task, such as defenses that need to be
removed to access a fruit [Whiten, 1998]. If the time

to complete each step of the task is exponentially
distributed, then we would expect the overall latency
to solve the task to follow an approximately gamma
distribution, causing the diffusion curve to become
more and more S-shaped as the number of task steps
increases [Hoppitt et al., 2010b]. Even if a task is
relatively simple in structure, we might still expect a
systematic increase in the per-capita rate at which
individuals solve it, due to a reduction in neophobia
of the task, e.g. utilization of a novel food source.
This too is likely to result in an S-shaped diffusion
curve [Hoppitt et al., 2010b]. In conclusion, recent
theoretical analyses suggest that researchers cannot
reliably infer social learning from the shape of the
diffusion curve.

Fortunately, in recent years, a more promising
method for analyzing diffusion data has emerged,
which addresses many of these concerns. It is known
as network-based diffusion analysis (NBDA). NBDA,
first invented by Franz and Nunn [2009], infers
social transmission if the pattern of spread of a
behavioral trait, as measured by the time to acquire a
trait, follows the patterns of association in a social
network. As such, it inherently addresses the
concern that the pattern of spread of a trait will be
influenced by population structure. Hoppitt et al.
[2010a] later extended NBDA to apply to order of
acquisition data (now known as order of acquisition
diffusion analysis(OADA)) as well as time of acquisi-
tion (now known as time of acquisition diffusion
analysis (TADA)). They also extended the method to
include individual-level variables that might influ-
ence the rate of acquisition, such as sex, age, and
dominance, which can statistically control for the
effects of these variables when testing for social
transmission [Hoppitt et al., 2010a]. This is particu-
larly important if such variables are correlated with
the social network structure, since this can result in
false positives for social transmission if such vari-
ables are not taken into account. Franz and Nunn’s
[2009] NBDA, like diffusion curve analysis, is
susceptible to false positives if there is a systematic
increase in the asocial rate of acquisition, due to, for
instance, a multi-step task structure or a decrease in
neophobia over time [Hoppitt et al., 2010b]. This
problem can be alleviated in one of two ways: either
by ignoring the exact times of acquisition and fitting
the model to the order of acquisition data [Hoppitt
et al., 2010a], or by fitting a model that allows for the
fact that the asocial rate of acquisition might
increase (or decrease) over time [Hoppitt et al.,
2010b].

With these refinements, NBDA is able to address
many of the problems inherent in diffusion curve
analysis, and so provide a reliable method for
analyzing diffusion data and inferring whether social
learning has taken place. As such, NBDA is of
potential utility to any researcher interested in
inferring social learning in natural populations, or
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in captive, but freely interacting groups, a common
objective of primatologists. NBDA has already been
used to analyze the diffusion of the solution to an
artificial foraging task in wild lemurs (Lemur catta),
though there was no evidence of social transmission
following the social network in this particular case
[Kendal et al., 2010a]. Nonetheless, we feel that
NBDA is likely to prove especially useful for
primatologists interested in social learning, as
primate groups are often studied in sufficient detail
that diffusions of naturally occurring traits are likely
to be documented at the level of individuals, and
social networks are now commonly quantified in
primate groups. In addition, NBDA can be modified
to provide a statistical test of hypotheses regarding
the pathways of social transmission within a group
(e.g. [Nahallage & Huffman, 2007]).

Our aim in the first part of this article is to
provide a users’ guide to NBDA, describing the
variants of the method in a manner that is accessible
to a nonmathematical reader, and providing guide-
lines for how to apply the method. All the methods
described in this article can be implemented in the
statistical package R [R Development Core Team,
2008], using the code provided on our website (http://
lalandlab.st-andrews.ac.uk/freeware.html), where
instructions for use are also available. We refer any
reader wishing to know the underlying technical
details to the primary literature on NBDA [Franz &
Nunn, 2009; Hoppitt et al., 2010a,b].

Despite its advantages, NBDA does make a
number of simplifying assumptions, most critically,
that individuals move directly from a naı̈ve to a fully
informed (knowledgeable) state at the time they first
perform the behavioral trait. In some circumstances,
this assumption will be unrealistic, for instance,
where the behavioral trait gradually becomes estab-
lished in an individual’s repertoire through reinfor-
cement of repeated performances. However, at this
stage, it is not clear whether violations of this
assumption would lead to error in the use of NBDA;
they may not. Accordingly, in the second part of the
article, we present the results of simulation analyses
that investigate the conditions under which current
NBDA models are able reliably to detect social
learning when the task requires repeated trials. We
do this by using agent-based simulations, in which
individuals learn to solve tasks using established
learning rules, and different types of social cues. We
then apply NBDA to these simulated datasets in
order to assess the method’s efficacy in assessing the
evidence for social transmission.

A USERS GUIDE TO NBDA

Randomization Method

A relatively simple way of testing whether the
order of acquisition of a behavioral trait follows the
pathways of association a social network is to use a

randomization test [Manly, 2007]. One intuitive way
to do this is to sum the network connections between
each individual that acquires the trait, and the
preceding individual to have solved the task, to yield
a test statistic. The null distribution for the test
statistic is then generated by repeatedly randomizing
the order in which individuals solved the task (say, 999
times), and calculating the same test statistic in each
case. The P value against the null hypothesis of no
social transmission is given by the formula (x11)/(N11),
where N is the total number of randomizations and x
is the number of randomizations for which the test
statistic was greater than or equal to that observed
for the real data. There are various other ways in
which the test statistic can be calculated, but the
general procedure remains the same.

The randomization approach has been used on
fish (guppies) [Morrell et al., 2008] and birds
(starlings) [Boogert et al., 2008], but failed to find a
significant effect in both cases. In at least one of
these cases, there are grounds for thinking this is a
false negative, as the application of a more powerful
NBDA found an effect of social learning [Hoppitt
et al., 2010a]. Unfortunately, the randomization
approach has some serious weaknesses. First, it does
not estimate an effect size for social transmission,
which is essential in making comparisons between
species or contexts. Ideally, one would also require
confidence intervals, which would give us an idea of
the power of our data to detect social transmission.
This is especially important since statistical power
will not just depend on sample size but also network
topography, with homogeneous networks yielding
lower power [Hoppitt et al., 2010a]. Another severe
limitation is that the randomization method does not
allow for the inclusion of other variables that might
influence the rate at which individuals acquire the
trait. If a variable affecting asocial rate of acquisition
is correlated with network structure, then this can
result in false positives [Hoppitt et al., 2010a]. For
example, dominant individuals might both associate
with one another, and also be faster to acquire the
trait than subordinates, making it appear like social
transmission is occurring. Inclusion of variables such
as social rank in the analysis allows us to statistically
control for these effects, and even when such
variables are not correlated with the social network,
their inclusion can result in greater power to detect
social transmission [Hoppitt et al., 2010a]. Finally,
the randomization method does not enable us to
incorporate information about the times of acquisi-
tion into the analysis, which can result in greater
power, although, as we discuss below, it also has its
weaknesses.

TADA AND OADA

The problems associated with the randomization
method can be addressed by fitting a model in which
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the rate of social transmission between individuals is
assumed to be a positive function of the strength of
the network connection between them. Franz and
Nunn’s [2009] NBDA, does just this: fitting a model
to the time at which individuals acquire the trait,
assuming that the rate of social transmission
between an informed and a naı̈ve individual is
linearly proportional to the network connection
between them. This effect is then scaled by a
parameter representing the strength of social trans-
mission, which is fitted to the data to assess the
evidence for social transmission. In the software on
our website this is a parameter (s) that varies from 0
(indicating all acquisition is asocial learning) to 1
(indicating that all acquisition is through asocial
learning).

Hoppitt et al. [2010a] extended NBDA to include
other, individual-level variables, such as sex or social
rank, influencing the asocial rate of acquisition,
allowing researchers to both estimate the effects of
such variables and statistically control for them.
They recognized two ways in which asocial learning
and social transmission might interact, additively
and multiplicatively. In the former case, each is an
independent stochastic process, and either form of
learning can result in acquisition, as would be the
case if social transmission occurs as a direct result of
observation, such as by imitation, or some other form
of observational learning. Alternatively, the two
acquisition processes might interact multiplicatively
(see Fig. 1), which would be more appropriate if
social transmission occurs indirectly through, for
instance, local enhancement [see Hoppitt & Laland,
2008; Whiten & Ham, 1992 for discussion on direct
and indirect routes to social learning]. It follows that
if researchers are to include individual-level vari-
ables in their analysis, they must select between
these models (see below). Hoppitt et al. [2010a] also
note that NBDA can be extended simply to include
multiple diffusions on different groups and/or of
different traits.

Franz and Nunn [2009] and Hoppitt et al.
[2010a] suggest slightly different methods for fitting
the model to the data. Franz and Nunn [2009]
recommend that time is split into a number a
discrete units, and the researcher specifies in which
unit, if any, each individual acquired the trait (this is
the method used by Kendal et al. [2010a]). Hoppitt
et al. [2010a] instead treat time as a continuous
variable, and the times of acquisition are specified for
each individual. In practice, the two methods will fit
equivalent models if the number of time periods used
in the discrete version is large. We find that the
computation speed is much faster for the continuous
version, and recommend that this be used if the exact
times of acquisition are known. However, the
discrete version remains useful if the exact times of
acquisition are not known. For example, data might
be collected as a series of scans to determine which

individuals are informed at a number of discrete points
in time. In this case, an individual observed performing
the trait could have acquired it any time since the
previous scan (assuming scans pick up all informed
individuals), and so the discrete method is appropriate.

Even if data is collected continuously, in the wild
it is unlikely that individuals can be observed all the
time, meaning there will be observation error in the
time at which each individual is recorded as acquir-
ing the trait. Franz and Nunn [2010] found that
observation errors can lead to inflated type-I error
rates, but that this problem could be alleviated by
using a discrete TADA in which the time units are
long enough. They suggest a rule of thumb that there
should be at least a 50% probability that an
individual who has acquired the trait will be
observed performing it within any given time unit.
This can be checked by calculating the proportion of
time units in which individuals are observed per-
forming the trait after the time unit in which they
are initially observed to do so.

As mentioned above, Hoppitt et al. [2010a]
introduced a variant of NBDA, which is fitted to
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Fig. 1. A graphical depiction of (A) the additive NBDA and (B)
multiplicative NBDA, showing the rate of trait acquisition for
two individuals as a function of the total connection to informed
individuals. At the extreme left of the range, individuals spend
no time with any informed individuals, whereas at the extreme
right, individuals are extremely well connected to individuals
that have acquired the trait. For both (A) and (B), the asocial
rate of acquisition for individual A (solid line) is double that for
individual B (dashed line). In the additive model, the absolute
difference in the rate of acquisition remains constant as the total
connection increases, whereas in the multiplicative model, the
ratio between the two remains constant.
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data on the order in which individuals acquire a
behavioral trait (OADA), rather than the TADA.
They found that the TADA typically has greater
power than OADA, but this comes at the cost of more
assumptions. In the forms given by Franz and Nunn
[2009] and Hoppitt et al. [2010a], TADA assumes
that the baseline rate of acquisition (the rate of
acquisition in the absence of social transmission)
remains constant over time. This can result in false
positives in the same circumstances as diffusion
curve analysis: when the asocial rate of acquisition
increases over time [Hoppitt et al., 2010a]. This could
occur if the trait is the solution to a complex task
that involves the completion of a number of steps.
Alternatively, if the trait is behavior directed to a
novel object, such as a novel food source, a decrease
in neophobia over time would result in an apparent
social transmission effect. OADA has the advantage
that it is not sensitive to such effects. However,
Hoppitt et al. [2010b] extend TADA such that it can
accommodate an inhomogeneous (nonconstant)
baseline rate of acquisition. They suggest that using
a baseline function corresponding to a gamma
distribution in the asocial time of acquisition will
correct for an increasing baseline rate, and allow the
TADA to be used in these circumstances, at the cost
of an extra parameter being fitted to the data.
However, OADA remains an attractive alternative
if the baseline rate function is thought to take a form
that is not easily modeled, e.g. fluctuating according
to unmeasured environmental conditions.

In summary, the researcher has to decide
whether to use (i) discrete TADA, continuous TADA
or OADA; (ii) a multiplicative or additive model; and
(iii) if using TADA, a constant or nonconstant
baseline rate of acquisition. In Figure 2, we give a
flow diagram to aid choice of (i), but choices (ii) and
(iii) can be incorporated into the model selection
framework, which we turn to now.

Model Selection Procedures

We will first cover the case where the main aim
of the researcher is to test for social transmission
through a network, either in a single diffusion, or
where the parameter controlling the rate of trans-
mission can be assumed to be the same for all
diffusions being analyzed. (We will go on to consider
the case multiple diffusions for which there may be
different rates of transmission).

The goal of the researcher is to work out which
statistical model provides the best fit to their
diffusion data. In this article, although we assume
the researcher is aiming to select the model best able
to account for the data in order to assess the evidence
for social transmission, in practice a model averaging
approach [Burnham & Anderson, 2002] might also
be applied). To this end, the researcher engages in a
model selection procedure in which they must decide
(i) which individual-level variables to include in the
model; (ii) whether they should use an additive or a
multiplicative model; (iii) whether they should
assume a constant or nonconstant baseline rate of
acquisition; and ultimately (iv) whether the inclusion
of a parameter representing social transmission
improves the model’s fit to the data. If the latter is
answered in the affirmative, then the researcher can
conclude that social learning occurred.

Franz and Nunn [2009] suggest comparing
models with (a) social transmission; (b) asocial
learning; and (c) asocial learning and social trans-
mission. We prefer to assume that asocial learning of
the trait can always occur, even if it is only at a very
low rate. Note that (a) can only be fitted if the
diffusion starts with informed individuals in the
population. There are a number of ways through
which researchers can determine which model
provides the best fit to their data (including
information criteria or likelihood ratio tests (LRTs),

Fig. 2. Flowchart for selecting the appropriate NBDA model. �Researchers should be cautious in assuming the baseline rate of
acquisition is constant, as a number of factors can cause increases in the baseline rate of acquisition [see Hoppitt et al., 2010b]. yIn
principle, any function can be used to model the baseline rate. However, the software provided on our website only allows for a
systematic increase or decrease in the baseline rate. In cases, where environmental variables are thought to unpredictably influence the
rate of acquisition, but to do so for all individuals in the same way, TADA becomes intractable, whereas OADA remains appropriate [see
Hoppitt et al., 2010a].
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forward selection, backward elimination, and so
forth). In this article, we aim to provide some
practical advice on how to proceed based on our
experience and understanding of NBDA. In the ESM,
we provide an example of the application of the
strategy implemented below, using the code provided
on our website. In this article, we suggest an
approach to fitting a TADA model. For simplicity,
in this article we assume that the baseline rate of
acquisition is either constant, monotonically increas-
ing, or monotonically decreasing. If this assumption
is violated, the researcher should use OADA (Fig. 2).
Note, the approaches we describe below can also be
used for fitting an OADA model, but in this case one
does not need to consider the baseline rate function.

The strategy involves first finding the best null
model (model without social transmission) using
Akaike’s Information Criterion (AIC) or corrected
AIC (AICc). Burnham and Anderson [2002] recom-
mend using AICc when N/ko40, where N is the
sample size and k is the number of model parameters.
We suggest taking N to be the number of acquisition
events, summed across diffusions. When the number
of individual-level variables being considered is small
enough, we recommend fitting every possible combi-
nation of individual-level variables twice, the first
time assuming a constant baseline rate function, and
the second time assuming a nonconstant (gamma)
baseline rate function. If the number of variables
makes this infeasible, we suggest using both forward
selection and backward elimination on the individual-
level variables to find the best model for a constant
and a nonconstant baseline. The best of these two
models is selected as the null model, in comparison
with which the best model containing social trans-
mission must prove a superior fit to the data if social
learning is to be inferred.

The researcher then repeats the exercise, this
time seeking the best model containing social
transmission. This time the procedure is carried
out four times, assuming additive learning and
multiplicative learning, each with constant and
nonconstant baseline rates. The researcher chooses
the best fitting model (smallest AIC or AICc) from
among these four cases. Finally, the researcher
compares the best model containing social transmis-
sion to the best model without social transmission
(s 5 0). The model that has the lowest AIC/AICc has
most support, but the magnitude of the difference
should also be assessed. Following the rules of thumb
suggested by Burnham and Anderson [2002, p 70],
we suggest that the evidence for social transmission
be considered strong if AIC/AICc for the best social
transmission model is 44 greater than that for the
best null model, and very strong if the difference is
410. The full model-fitting procedure can be
performed automatically using the AICTable func-
tion provided on our website, which returns a full
table of models ordered by AIC or AICc.

A more stringent test for social transmission
might be a procedure in which one simply adds social
transmission to the null model, where one essentially
tests for social transmission once everything else has
been taken into account. However, one still has to
choose between the additive and multiplicative
models to compare with the null model.

When the researcher is analyzing multiple
diffusions for which there may be different rates of
transmission, we suggest an initial comparison
between three models: (i) without social transmis-
sion; (ii) a common rate of social transmission for all
diffusions; (iii) different rates of social transmission
for cases where it is assumed to differ (e.g. different
groups). This can be carried out using the strategy
recommended above in each case. This will give us an
initial idea of whether there is social transmission
and whether it differs in strength between diffu-
sions. If model (iii) is preferred, one can then test (i)
which diffusions have significantly different rates of
social transmission, by fitting models in which each
pair are constrained to be the same, and using a
LRT, and (ii) which are significantly different to
zero, by fitting models in which each is constrained
to be zero, and using a LRT (see ESM for an example
of how this is performed).

Once the model has been fitted, it is important to
obtain confidence intervals for the parameters of
interest in the model. Even if there is no evidence for
social transmission, we recommend getting confi-
dence intervals for the social transmission para-
meter(s), as this can give us an idea of the statistical
power to detect social transmission. If the confidence
interval includes zero, but is also very wide, this
suggests that the data did not have much power to
detect an effect (either because of sample size, or
homogeneous network structure). However, if the
confidence intervals are narrow and include zero,
this indicates that we have evidence that there was
little or no social transmission involved in a diffusion
(or more accurately, little or no social transmission
following the social network provided).

Choosing a Social Network

So far we have not discussed the type of social
network that should be used in an NBDA. There are
numerous types of data that can be used to construct
social networks [Croft et al., 2008; Whitehead, 2008],
some result in binary networks, where a connection
between individuals is either present (1) or absent
(0), whereas others result in weighted networks,
where the strength of a network connection is also
specified. Networks can also be directed, where the
connection from individual i to j is not necessarily
the same as that from j to i. NBDA has been
developed primarily for application to a weighted
network, but there is no reason NBDA cannot be
used for a binary network too. In such instances, the
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model assumes that social transmission occurs at the
same rate between all connected individuals, and not
at all between nonconnected individuals.

In general, NBDA assumes that the rate of social
transmission between two individuals is proportional to
the network connection between them. Consequently,
we suggest that a network is chosen that reflects the
frequency of opportunities for social learning between
each pair of individuals. For instance, if the trait is an
arbitrary behavior pattern that can be performed at
any time, one could use a measure of the proportion of
time two individuals spend together, or within observa-
tion distance of one another. Alternatively, if the trait is
a skill used in foraging, one could use a measure of the
proportion of time individuals feed together. Although
such reasoning is defensible, we are conscious that
further work is required to investigate which network
measures best correspond to the proportion of time
individuals spend observing one another. However,
while the preceding discussion assumes that a naı̈ve
individual must observe an informed individual per-
forming a trait for social transmission to occur, this is
not necessarily true. There are a number of cases where
it has been shown that social transmission can occur
when a naı̈ve individual is exposed to the products of an
informed individual’s behavior [e.g. Campbell & Heyes,
2002; Mitchell et al., 1999; Sherry & Galef, 1984;
Terkel, 1995]. In this case, the most appropriate social
network would be one that reflects how often an
individual is likely to encounter the products of
another’s behavior.

An alternative way to approach NBDA is to use a
number of different types of social network, to
investigate which one best explains the pattern of
diffusion, and so make inferences about the manner in
which social transmission occurs [Franz & Nunn,
2009]. One way to do this would be to formulate
different social networks that correspond to different
hypotheses about how social transmission occurs,
such as specific theories regarding ‘‘directed social
learning’’ [Coussi-Korbel & Fragaszy, 1995]. For
instance, a hypothesis that all social transmission is
vertical (from parents to offspring) could correspond to
a directed binary social network which has 1 weightings
from adults to their offspring, and 0 weightings else-
where. Similar networks could be constructed to allow
oblique transmission (older generations to younger
generations) and/or horizontal transmission (between
peers within a generation), and the fit of each model
compared using AIC. In other cases, hypotheses might
link social transmission to social rank. Although NBDA
has not yet been used in this way, it represents a highly
promising application of the method.

NBDA WITH A MORE REALISTIC LEARNING
MODEL

NBDA fits a relatively simple model of the
learning process. The model assumes that individuals

move directly from a naı̈ve state (before their first
performance of the behavioral trait) to an informed
state, after which they can transmit the behavioral
trait to others at a rate that equals all other informed
individuals. This is perhaps unrealistic, since in many
circumstances individuals are not likely to be
immediately proficient in performing the behavioral
trait. More plausibly, individuals may increase their
rate of performance of the trait as they are reinforced
for doing so, thus transmitting the trait at a higher
rate to others. The fact that NBDA makes a
simplifying assumption about the learning process
is not inevitably problematic, since all mathematical
and statistical models make simplifying assumptions,
and sometimes these do not really affect their utility.
However, in this case, it is important to test whether
NBDA works accurately when individuals learning in
a more biologically plausible manner. To this end, we
conducted simulations that modeled diffusions occur-
ring according to a widely recognized learning rule,
and then applied NBDA to the simulated data sets, to
test whether NBDA could still detect social transmis-
sion in such circumstances.

In all simulations, naı̈ve individuals sponta-
neously performed the target trait at a low baseline
rate: the first individual to do so in the population
would be the innovator [Reader & Laland, 2003].
When an individual performed the trait, it would be
reinforced for doing so, following the Rescorla–
Wagner learning rule, meaning that the association
would converge on its maximum value (1) as the
individual performed the trait more and more times
(see Fig. 3). Therefore, the rate of trait performance,
li(t), by individual i at time t was given as follows:

liðtÞ ¼ ðm1oViðtÞÞ; ð1Þ

where m is the baseline rate of trait performance,
0 � ViðtÞ � 1 is individual i’s association of the trait
with reward at time t, and o gives the maximum
effect learning can have on the rate of trait
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Fig. 3. Rescorla–Wagner learning rule used in the simulation
models. The association of the trait with reward is shown as a
function of the number of trait performances for different rates
of learning (a).
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performance. The quantity of interest here is o/m,
which gives a measure of the rate at which
experienced informed individuals perform the trait
relative to naı̈ve individuals, i.e. is a measure of how
hard the trait is to invent asocially. Each time an
individual solved the trait, its association of the trait
with reward was incremented as follows:

DVi ¼ að1� ViÞ; ð2Þ

where aZ0, controls how quickly individuals reach
the maximum level of learning. When a5 1, this
model corresponds to NBDA: after an individual’s
first performance of the trait, it is fully informed, and
performs the trait at maximal rate. Our interest lies
in testing whether NBDA is still appropriate when
ao1.

In each simulation, each time one hypothetical
individual performed the trait, there was a prob-
ability each other individual in the group would
observe it. To determine who observed, for each
simulated group, we randomly generated a social
network, which was generated using the methods
described in Hoppitt et al. [2010a]. This method
generates a symmetrical network with values
between 0 and 1, which here we take as the propor-
tion of time individuals spend within observation
distance of one another. The network was pruned
such that connections less than 0.8 were set to 0 to
give the network what we assumed to be a more
realistic structure (the effect of this parameter is
investigated in more detail in [Hoppitt et al., 2010a]).
We assumed that that probability of observation
was a linear function of network connection, corres-
ponding to an observation probability of 0.3 for
individuals that were within observation distance.

In the first set of simulations, social learning was
modeled as occurring in an analogous manner to the
asocial learning described above. For individuals who
observed trait performance, their association of the
trait with reward was incremented as follows:

DVi ¼ sð1� ViÞ; ð3Þ

where sZ0 determines the strength of social trans-
mission. We simulated 1,000 diffusions for each
combination of parameter values (see ESM for
technical details), each time recording the time each
simulated individual first performed the trait, and
taking this as the time of acquisition, as one would
for real data. We then applied OADA and TADA
(with constant and monotonically changing baseline
rates) to the data, with no individual-level variables,
recording whether social transmission was detected
at the 5% significance level using an LRT. The
proportion of cases in which social transmission was
detected gives us an estimate of statistical power in
each cases, or Type I error when s 5 0.

Note that in applying NBDA, we used the same
social network used to generate the data, and so
assume that the measured social network reflects,

without error, the ‘‘true’’ social network determin-
ing the path of social transmission. Although this
assumption is unrealistic, our main concern here is
to compare the performance of NBDA when the
assumptions of the model are and are not upheld,
and so this assumption is not a concern.

We ran simulations for a group size of 20, for a
social transmission effect s 5 0.025, varying the
relative effect of learning o/m, and the rate of
learning a. The results are shown in Figure 4. We
find that as the relative effect of learning, o/m,
increases, the power to detect social transmission
increases. This is not surprising. When o/m is low,
individuals easily invent the behavioral trait for
themselves, and so we would not expect the times of
acquisition to follow the social network. Unsurpris-
ingly, that power is highest when a5 1, since the
process underlying the data effectively follows the
NBDA model. However, we note that though power
does drop off as a decreases, this drop is surprisingly
small even when a is as low as 0.05. This suggests
that NBDA remains capable of detecting social
transmission even when there is not a sharp
transition from a naı̈ve to an informed state. When
we set s 5 0, we found that the Type-I error rate still
remained appropriate (�5%) for our more realistic
learning model.

The first set of simulations assumed that social
learning operated in an analogous manner to asocial
learning, where observation directly altered an
individual’s association of the trait with food.
However, there are numerous social learning pro-
cesses that do not operate in this way. Some social
learning processes transiently alter an observer’s
behavior in a way that leads to learning by otherwise
asocial means [Hoppitt & Laland, 2008; Whiten &
Ham, 1992]. We wanted to know whether NBDA was
still effective in detecting social transmission that
operated in this way. To model the process, we
assumed that the observation of the trait transiently
increased an observer’s rate of trait performance
(but did not result directly in learning), and that this
effect faded away exponentially to baseline levels.
This could taken as a model of local enhancement
[Thorpe, 1956] where the observer is attracted to a
location at which the trait is more likely to be
performed, e.g. the solution to a foraging task can
only be performed at the task itself [e.g. Whiten
et al., 2005]. Alternatively, it could be a model of
response facilitation [Byrne, 1994], where observa-
tion of the trait itself makes performance of the trait
more likely.

We set the strength and duration of the
transient effect to approximate that we estimated
for local enhancement in populations of meerkats
solving a foraging task [Hoppitt et al., in prepara-
tion]. The strength of the effect was set such that
the rate of trait performance immediately after
observation was approximately 2,000� that of
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baseline levels, and this faded away with a half-life of
21 sec. We then ran sets of simulations for different
values of a, o/m, and group sizes. The results are
shown in Figure 5. The power was very high for the
strength of transient effect that was modeled, even

when the relative effect of learning (o/m) was low
(c.f. Fig. 4), for both high and low rates of learning
(a). Admittedly the transient effect modeled here is
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Fig. 5. Estimated power of different NBDA methods to detect
indirect social transmission as a function of the relative effect of
learning (relative to the naı̈ve rate of performance) and the rate
of learning (a). In the simulations observation resulted in a
transient increase in trait performance, but did not result
directly in learning. Power at the 5% significance level was
calculated using 100 simulations of groups of 20 individuals (see
main text for details). Error bars show Wilson’s 95% confidence
intervals. The results show NBDA can detect social transmission
even when it operates by indirect means.
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Fig. 4. Estimated power of different NBDA methods to detect
direct social transmission (s 5 0.025) as a function of the relative
effect of learning (relative to the naı̈ve rate of performance) and
the rate of learning (a). Power at the 5% significance level was
calculated using 1,000 simulations of groups of 20 individuals
(see main text for details). Error bars show Wilson’s 95%
confidence intervals.
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strong, but this is based on an estimate made on real
data [Hoppitt et al., in preparation].

The clear take-home message is that NBDA is
capable of detecting social transmission, in spite of
the fact that it assumes a very simplified form of
learning. This conclusion holds even when social
learning operates by indirect means (i.e. when
observation of the trait does not directly result in
trait acquisition).

SUMMARY

In summary, NBDA provides a promising meth-
od for detecting the social transmission of behavioral
traits in primates, using data on the time or order of
acquisition of the trait and a suitable social network.
The simulations presented in this article suggest
that NBDA works well even when the assumptions of
the underlying model are violated, i.e. when indivi-
duals do not move directly from a naı̈ve to an
informed state, and when social transmission oper-
ates indirectly, by transiently influencing observers’
behavior in a way that can lead to learning. NBDA
can be carried out in the statistical environment R
[R Development Core Team, 2008] using the code
presented on our website (http://lalandlab.st-andrews.
ac.uk/freeware.html), where technical instructions
are also provided. We hope that the guidelines given
in the first half of this article will aid researchers in
selecting the appropriate variant of NBDA, and in
fitting the model to their diffusion data.
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