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The demographic and ecological success of our species is frequently attributed to our capacity for
cumulative culture. However, it is not yet known how humans combine social and asocial learning to
generate effective strategies for learning in a cumulative cultural context. Here we explore how
cumulative culture influences the relative merits of various pure and conditional learning strategies,
including pure asocial and social learning, critical social learning, conditional social learning and
individual refiner strategies. We replicate the Rogers’ paradox in the cumulative setting. However, our
analysis suggests that strategies that resolved Rogers’ paradox in a non-cumulative setting may not
necessarily evolve in a cumulative setting, thus different strategies will optimize cumulative and non-
cumulative cultural learning.

© 2012 Published by Elsevier Ltd.

1. Introduction

The success of humanity, in colonizing and thriving in virtually
every terrestrial habitat, is widely attributed to our species’
capacity for cumulative culture (Boyd and Richerson, 1985;
Tomasello, 1999; Enquist and Ghirlanda, 2007). By “cumulative
culture” we mean the capability to accumulate knowledge, and
for iterative improvements in technology, over multiple genera-
tions. The capacity of human culture to amass ever more effective
solutions through repeated bouts of innovation and social trans-
mission, leading to the evolution of technology that no individual
could alone invent, has been described as like a “ratchet”
(Tomasello, 1994, 1999). However, it is not yet known how
humans combine social and asocial learning so efficiently to
generate cumulative learning.

Adaptive rules that govern use of social information are referred
to as “social learning strategies” (Laland, 2004) or “transmission
biases” (Boyd and Richerson, 1985; Henrich and McElreath, 2003).
Formal theory suggests that individuals should be selective with
respect to when they copy others, and from whom they learn
(Boyd and Richerson, 1985, 1995; Henrich and McElreath, 2003;
Laland, 2004), and a variety of social learning strategies have been
proposed. In many instances, the relative merits of reliance on
alternative social learning strategies have been examined through
theoretical work using population genetic and game theory models
(Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1985;
Rogers, 1988; Henrich and Boyd, 1998; Enquist et al., 2007;
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Wakano and Aoki, 2007; Kendal et al.,, 2009). However, these
analyses have not considered how best to learn in a cumulative
cultural framework, and it is not clear that those strategies that
work most effectively in a non-cumulative setting will necessarily
be optimal in a cumulative setting. For instance, Henrich and Boyd
(1998) found that conformist social learning is favoured by selec-
tion over a broad range of conditions, yet Eriksson et al. (2007)
found that conformity hindered cumulative cultural evolution.

One feature of human success is extreme population growth,
which is indicative of an increment in absolute fitness. However,
anthropologist Rogers (1988) first pointed out the “paradox”
inherent in the observation that the use of pure (unbiased) social
learning did not increase average individual fitness in a popula-
tion of asocial learners. Rogers found that when rare, the fitness of
social learners exceeds that of asocial learners, but declines with
frequency as there are fewer asocial learners producing adaptive
information in a changing environment. The population evolves
to a mixed evolutionarily stable state where, by definition, the
fitness of social learners equals that of asocial learners. This
finding is now commonly known as Rogers’ paradox (Boyd and
Richerson, 1995), so called because it contrasts with a commonly
held assertion that culture enhances fitness, and that social
learning increases human adaptability.

Previous theoretical studies have established that the average
individual fitness at equilibrium can be enhanced if individuals
switch strategically between reliance on asocial and social learning
(Boyd and Richerson, 1995, 1996; Kameda and Nakanishi, 2003;
Enquist et al., 2007). Rogers’ paradox can be solved by learners that
deploy an adaptive filter to evaluate a solution to a problem before it
is accepted. The first such strategy was suggested by Boyd and
Richerson (1996) and later named “critical social learning” by
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Enquist et al. (2007). A critical social learner is an agent that first
tries social learning and if that does not yield a solution, the agent
tries individual (or asocial) learning instead. Enquist et al. (2007)
also suggested another strategy utilizing adaptive filtering of infor-
mation: the “conditional social learner”. Conditional social learning
starts with individual learning and switches to social learning only if
that failed. Enquist et al. based their model on that of Rogers (1988),
but made changes to create a framework better suited for mathe-
matical analysis. In the Enquist et al. model, individuals have to find
a solution to a problem using either social, individual learning, or a
combination of both. Having a correct (or “OK”) solution yields a
fitness of 1, whilst not having it gives no fitness gain (i.e. the
“fitness” benefits associated with solving the problem must be
considered as an increment to some unspecified baseline fitness).
Learning is costly and this cost is subtracted from the fitnesses.
There is also a probability that the environment changes, in which
case the previous solution is no longer valid and a new one has to be
found using individual learning. It was assumed that an old solution
could never become valid again. Enquist et al. (2007) showed that
both the critical and conditional social learner strategies out-
compete pure asocial and social learning strategies. Moreover, they
both increment mean individual fitness, to provide solutions to
Rogers’ paradox. Rendell et al. (2010) extended these findings to a
spatially explicit context. While Enquist et al. (2007) report a clear
superiority of the critical over the conditional social learner, Rendell
et al. (2010) report a broad range of conditions under which the
conditional social learner is the most effective strategy. However, it
is not known whether these solutions apply in a cumulative cultural
context, which is a distinctive feature of human social learning.

Here we extend the framework provided by Enquist et al.
(2007) to analyze how cumulative culture influences the relative
merits of their proposed learning strategies, as well as other
closely related strategies. While the basics of the problem remain,
a major difference is that here, in a cumulative context, having a
solution is no longer a binary function (i.e. present/absent).
Instead, cumulative culture can yield one or more better, more
refined solutions to the problem at hand. Accordingly, the solu-
tion can be characterized by its level of refinement, with more
refined solutions yielding higher fitness.

Previous models of cumulative culture have studied the
refinement of a cultural trait where the difficulty of acquiring a
cultural trait is not reliant on its level of refinement (Boyd and
Richerson, 1996; Henrich, 2004; McElreath, 2010). This models a
situation where refining the solution to some problem does not
increase the complexity of the solution. In this paper we assume
that a more refined solution is also more complex and therefore
harder to learn. One example of this is an axe. A rock will do as a
simple axe. However, adding steps to the process of making an
axe, such as sharpening the rock, drilling a hole and mounting a
handle will increase the effectiveness of the tool, but at the same
time make the process more complex and therefore harder to
copy in full. This difference allows us to study the level of
complexity that be maintained in a society, given a certain
learning strategy. Our analysis suggests that different strategies
will optimize cumulative and non-cumulative cultural learning.

2. Model

To extend Enquist et al.’s framework to allow for cumulative
culture, we allow solutions to the problem to be proposed at
different refinement levels. For simplicity, we assume that refine-
ment of culture always takes place in simple discrete steps and
follows a linear progression. Each level of refinement is directly
dependent on the previous and is associated with an improvement
in the efficiency of a solution to a problem and a corresponding

increase in fitness of its user. Agents start without any solution and
therefore accrue a fitness increment of 0 in addition to their
baseline fitness. With some probability depending on their choice
in learning strategy, they will find a basic solution, which we
describe as refinement level 1. This solution is associated with a
fitness increment. With some other probability, agents find a more
refined solution, level 2, which confers higher fitness increment.
Similarly, individuals can reach level 3 with some probability, and
so on. We assume refinements can continue indefinitely and that
the probability of reaching a certain level of refinement may
depend on the distribution of knowledge in the population, as
well as the probability of environmental change.

2.1. Environment

We assume that the environment can change with probability
1—Ppoch» Making ppocn the probability of the environment staying
the same between two generations. When the environment
changes, it renders all previous solutions invalid (i.e. they return
a fitness of 0).

2.2. Learning

We assume discrete generations. At the beginning of each
generation, agents learn about their environment, in the process
devising solutions to the problem. When learning, an agent is
assumed to acquire a solution at a certain level of refinement,
depending on the efficiency of that learning strategy, as well as
chance. If, through learning, the probability of finding a solution
with a refinement level equal to or greater than n is p(n), then the
probability of reaching exactly that level and nothing more is

_p(n+1)>
P (n)(1 pm) )

Thus, learning within this framework is the same as sampling from
the discrete probability distribution generated by f(n)=p(n)
(1-p(n+1)/p(n)), which greatly simplifies the analysis. It then
follows that the average level of refinement to a solution achieved
by a given learning strategy is

o0 1 o0
> np(n)(l—p s )> =3 pm. @

n=1

M

Previously, researchers have modeled learning in cumulative
culture using a continuous (Gumbel) probability distribution
(Powell et al., 2009; Henrich, 2004). In contrast, here we will
derive the probability distributions that are associated with some
social learning strategies common in the literature.

2.3. Fitness

We define a fitness function associated with cumulative
learning, which increments by one “fitness unit” for every level
of refinement, minus the cost (c) associated with the learning
strategy deployed. This means that the fitness w of an agent is
w =Wy +n—c, where wy is some baseline fitness, n is the level of
refinement the agent has achieved and c is the cost incurred.
While fitness normally only makes sense when it is positive, our
model will only consider relative fitness, so we can set wg =0
without loss of generality. The expected fitness of an individual is
thus

o0
W= pm-c 3)
n=1
Another possibility would be to have the cost be dependent on
the amount of refinement, so that w=n-nc. However, this is
equal to w = (1—c)n so the cost would just change the slope of the
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fitness function compared to when the cost is constant. As this
difference is unlikely to yield any interesting qualitative differ-
ences, we deploy the simpler solution of subtracting the cost,
which has the additional advantage that it is consistent with
Enquist et al. (2007). Another possibility is to assume that there is
a diminishing return to more and more refined solutions, which
can be captured by making the fitness a function of the logarithm
of the refinement level

w = Log(n)—c, (4)

o0
W= Log(Z p(n)) —c. ©)
n=1

We find that the choice in fitness function has some impact on
which strategies that can evolve. We will begin our analysis with
the simpler, linear fitness function and the strategies which can
evolve in that setting. We will then move on to the more realistic
logarithmic fitness function and the additional learning strategies
that are made plausible by that change.

3. Linear fitness function
3.1. Pure individual learners

We begin by considering a pure individual (or asocial) learner, as
considered by Rogers (1988) and Enquist et al. (2007). Individual
learners are here denoted with a label I. Unlike the earlier treat-
ments, our modeling structure allows the possibility of infinite
refinement of any solution to the problem. This means that
individual learning can no longer “always be successful”, as in
Rogers (1988), since this would imply that individual learners
always manage to find an infinitely refined solution. Let p; be the
probability of successfully learning one refinement step through
individual learning, then p(n) = pJ is the probability distribution and
> m_1 D] is the expected level of refinement across the population.
We denote the cost of individual learning by c;. The expected fitness
w of individual learners is given by

Z pri—c =

n=1

7—1—(:]. (6)

3.2. Pure social learners

We assume that a pure social learner observes a randomly
chosen demonstrator agent and then tries to copy the solution
exhibited by that demonstrator. Any error in the transmission of
culture results in a lower level solution. This is similar to the
model by McElreath (2010), where copying results in a solution
that has a fraction of the fitness associated with the solution
being exhibited by the cultural parent. The probability that they
reach a certain level is thus also dependent on the proportion of
the population with at least that level of refinement, as well as the
environmental stability. Social learners are denoted with a label S
and the probability of reaching level n through social learning,
given that there is no environmental change, is given by

Dsn :pZoEqn,t' (7)

where p,r is the probability of successful social transmission
(probability of no error) and q,,, is the proportion of the popula-
tion with at least n steps of refinement at time t. It follows that
the change in the distribution of knowledge over time resulting
from social learning is given by

Ant+1 = qiPT +9sProchPs,n» ®)

where q; and ¢s are the proportions of individual and social
learners in the population and py,cp, is the probability that there
was no environmental change since the last generational time-
step. Assuming that genetic evolution is significantly slower than
cultural evolution, then from (8) the stationary distribution ¢,, is
given by

aipy

= €]
" 1—qsPnocnProe )

The expected fitness of pure social learners is

=}

Ws= > GnProchPhor—Cs» (10)

n=1

which, using (9), can be written as

qlpl pnoEpnoCh
—Cs. 11
g 1- qunoChpnoE 3 ( )

§|

Using q;=1-qs and (9) we consider what happens when the
social learners go to fixation

limg, =0, (12)
qs—1

which, together with (11) gives

llmWS = —Cs. (13)
qs—1

Thus, where the proportion of social learners in the population to
increase to 1, there would be no models with a solution of any
refinement level and social learning would become useless.
This means that we have replicated the original Rogers’ paradox
in this cumulative setting, which is illustrated by Fig. 1. While this
result is not at all unexpected considering previous studies have
shown that Rogers’ paradox is stable across many different
conditions (e.g. Boyd and Richerson, 1995; Rendell et al., 2010),
Rogers’ paradox has previously not been explored in cumulative
culture.

3.3. Conditional social learner

The conditional social learner is one of the strategies that have
been found to perform better than both pure social learning or pure
individual learning in a non-cumulative setting (Enquist et al., 2007;
Rendell et al,, 2010). This strategy involves first trying individual
learning and then switching to social learning if that fails to provide
an OK solution. To implement this strategy in the cumulative

6 -
Social Learners
5 =
. Individual Learners
g3f
2
2 L
l L
0.0 0.2 0.4 0.6 0.8 1.0

qs

Fig. 1. The Rogers paradox in the cumulative setting. Here too, the social learners
fitness decreases to a level below that of individual learners as they take over the
population. Plotted with p; = 0.85, p,,r =0.99, ppocp =0.99, c;=1, cs =0.2.
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setting, we have to define what substitutes for “an OK solution”.
Since the cutoff point for an OK solution will influence the fitness of
conditional social learners, we use a parameter, k to represent the
cutoff point. This implementation is also similar to the selective
learners in Boyd and Richerson (1995), where individuals learn
individually and evaluate the quality of the result. If the signal from
the environment has a high enough quality, they adopt the solution
acquired from individual learning, otherwise they copy another
individual. We have chosen not to implement an extra cost for the
cognitive machinery needed to evaluate the solution acquired and
decide whether to invest in more learning. Such costs have been
implemented in previous models and will create a threshold at
which the conditional strategy is better than the unconditional and
will not provide any additional insights (see Boyd and Richerson,
1996; McElreath, 2010).

Here, the conditional social learner will be denoted IS (Indivi-
dual first, then Social) and it has an expected fitness of

Wi-+(1-p) S8 0] S0 1 GnPhotProcn)—(1-p)cs if k>1,
IS=19 — o A
wi +(1 _pl) Zn =1 qnpgoEpnoCh_(l _pI)CS EISe
(14)

when k levels of refinement is required for an OK solution. In
competition with the pure individual learner this yields

min(k,n)—1 .
Gnes1=Q00 +is | PP +A=PDnProch Y. PiPnot | (15)
j=o0
which gives (using q; = 1—gqs)
n
dn= b (16)

1-(1-pPProculis Z”i"é’""”] Pionet

It is apparent that §,, increases with g5, which means that w;s will
also increase with q;s. Thus the conditional social learner strategy
always has a higher fitness than the individual learner strategy,
provided ws > 0. This means that the conditional social learner
provides a solution to Rogers’ Paradox in the cumulative setting.
Fig. 2 shows the distribution of culture in a population of
conditional social learners. We can see a small drop at k+1, due
to this being the first level of refinement which the individuals
have just one chance to learn. The right hand graph shows that
the conditional social learner is fairly efficient at solving the
problem. The probability mass of n > k is significantly larger than
that for n < k.

Evolution will drive k to the point where the availability of
information on higher level solutions is scarce enough in the

Conditional Social Learning

10k probability of reaching at least level n
0.8
0.6
&
04 F
02
7 8 9 10

n
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population to make social learning ineffective
mkin Z []npgg%l—kmeh_Cs >0. 17)
n=k

3.4. Social learning and individual refinement

With a linear fitness function, the relation between the cost
and the benefit of learning another step using individual learning
is constant. This means that it is never useful to evaluate a
solution in order to decide whether to use individual learning to
refine that solution or not. Therefore, critical social learning is not
a stable strategy in this setting. Whereas k for the conditional
social learner will evolve to a specific value, evolution of a
corresponding parameter for the critical social learner would
cause the parameter to increase indefinitely (k— oo). This would
effectively remove the critical component of the critical social
learner. Accordingly, we propose another strategy, which we call
the individual refiner. An individual refiner first uses social learn-
ing and then always uses individual learning to refine any
solution found by social learning, i.e. it acts exactly like a critical
social learner with k=oo (Fig. 3). Previous models have also
considered strategies incorporating social and individual learning
in an unconditional fashion (Boyd and Richerson, 1996;
McElreath, 2010). The average fitness of individual refiners, which
we denote IR, is simply the fitness of a social learner plus that of

81 Wis, k= 14
WTS’k:4
or i k=1
wy
4y
2
2,
1 n n n 1 n n n 1 n n n 1 n n n 1

0.0 0.2 0.4 0.6 0.8 1.0
q1s

Fig. 3. Fitness of the conditional social learner with different values for k.
With these parameters, the fitness is maximized when k=14. Plotted with
Prog = 0.95, Proch = 0.99, p, = 0.85.

Conditional Social Learning
probability of reaching exactly level n

0.20
0.15 ]
= 0.10
0.05 + ﬂ
1 2 3 4 5 6 7 8 9 10 ‘

n

Fig. 2. The proportion of the population with at least refinement level n (left) and the proportion of the population with exactly level n (right) for n < 10 in a population
consisting of conditional social learners. Plotted with p,,z =0.95, p,oc, =0.99, p; =0.85, k=5.
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an individual learner
Wig =Ws+Wy. (18)

The proportion of the population with a refinement level of at
least n is given by

Qne+1 =P +st | ProchPs.n +(1—ProchPs,1)PT

n-1 .
+ anochps,j(l _qj+1,tpnoE)p7_J:| ’ (19)
j=1

where the first two terms within the brackets are the probability
of reaching level n by only social learning and the probability of
reaching level n in the case of an environmental change, in which
case only individual learning can be used. The last term between
the brackets is the probability of reaching level n by a combina-
tion of social and individual learning. The sum gives the prob-
ability of reaching exactly level j using social learning and then
learning the remaining n—j levels using individual learning.

The individual refiners always perform better than the condi-
tional social learners when social learning is beneficial. This is
easy to see from the fact that individual learning has the same
fitness benefit regardless of when it is performed (before or after
social learning), while social learning is more efficient at lower
levels of refinement (due to them being more wide-spread in the
population). Further, this order allows the individual refiners
always use both social learning and individual learning, which
also increases fitness, as well as makes sure that they perform
well even when making up the entire population.

The decrease in the proportion of the population (Fig. 4) with
refinement level n does not exhibit any sudden drop, but rather it
decreases very slowly compared to all other strategies presented
in this paper.

4. Logarithmic fitness function

With a logarithmic fitness function the difference between the
benefit and the cost of individual learning will vary, depending on
the individuals previous knowledge when engaging in individual
learning. An individual will therefore have to evaluate whether a
solution needs to be refined further also in the case when social
learning is performed first. This leads us to the critical social
learner as defined by Enquist et al. (2007): “[An agent] who starts
by socially learning a solution and then critically evaluates

Individual Refinement

0.6

Zln

04

1 2 3 4 5 6 7 8 9 10

Fig. 4. The proportion of the population with at least refinement level n for n < 10 in a
population consisting of individual refiners. Plotted with p,,; =0.95, ppcn =
0.99, p; = 0.85.

whether this seems to be an OK solution; if it is not OK, individual
learning is tried.”.

4.1. Critical social learner

The critical social learner starts by utilizing social learning and
if that does not provide an acceptable solution, uses individual
learning to refine that solution further. The critical social learner
is very similar to the conditional social learner in that it has a
parameter, k, that defines which level of refinement is considered
OK. Critical social learning will be denoted as SI. The expected
fitness of SI is simply the logarithm of the expected level of
refinement found by social learning plus the expected level of
refinement found by individual learning multiplied by the prob-
ability that social learning failed to reach at least refinement level
k minus the associated costs

_ > 1

Ws = Log ( > PsnProch+Ps <k <1TPI —1> > —Cs—Ds < kCI» (20)
n=1

where ps_, is the probability of social learning rendering a

solution with a refinement level less than k

k=1
DPs<k= Z [ijlnol;‘pnoCh(1 _aj+1pnoE)+(1 _[lenoChpnoE)- (21)
j=1
From this definition, we can see that critical social learning will
always perform at least as well as pure social learning, assuming
individual learning has a positive payoff and k is not set too high.
We can assume that pure social learners would be replaced by
critical social learners. Adding the critical social learner changes the
proportion of the population with a solution of level n at time t, q,, .

Qnev1 =401 +4s (Pnochps,n +(1—=PnocnPs,1)PT

min(k—1,n—1)

o

ProcnPs,j(1=j 4 1,Pro)D] ) . (22)
j=1

The equations for the stationary distribution are given in Appendix A.

The probability of a critical social learner reaching level m <k
has to be at least pj"+x where x is the increased probability
because of the capability of social learning. Thus the probability of
a critical social learner reaching level m is always higher than that
of a pure individual learner. Because of this §,, increase with gs;
for all m <k.

For levels m > k we have three possibilities. First, there is some
probability not to reach that level at all. Second, that level might
be reached through pure social learning. Third, the level might be
reached by first using social learning and then individual learning.
After a critical social learner reaches refinement level k, the
learning strategy for the rest of the refinement steps is set. If
social learning worked all the way up to this point, the agent will
not fall back on individual learning and thus is acting like a pure
social learner. This happens with probability

p’éoEpnoCth- (23)

Alternatively, the social learning failed at some point during the
learning process and individual learning was used for part of the
way. We have already established that §,, increases with gg for
m < k, so when the proportion of critical social learners increases the
probability of reaching level k through just social learning (Eq. (23))
also increases. This implies that fewer critical social learners engage
in individual learning when gg; increases and therefore the prob-
ability of discovering better solutions, or rediscovering lost informa-
tion decreases. Thus a large proportion of the critical social learners
will tend to “get stuck” on level k and only a smaller part of the
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Individual vs. Critical Social Learning

I:l Critical Social Learning

I:' Individual Learning
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Critical Social Learning
Probability of reaching exactly level n
0.30

025

0.20

0.15 |

0.05 |

-0.05 F n

Fig. 5. The graph on the left is a comparison of the proportion of the population with at least refinement level n for n <10 in a population consisting of pure individual
learners and one consisting of critical social learners. On the right is the proportion of the critical social learners that reach exactly level n. Plotted with

Prok = 0.95, Procy = 0.99, p; =0.85, k=5.

1.0
0.9
0.8

0.7

Fitness

0.6

0.5

qs1

Fig. 6. Fitness for the pure individual learner (dotted) and the critical social
learner when an OK solution consists of at least k steps of refinement. When k=1,
the critical social learner does not solve the Rogers’ paradox. At the individual
level k=3 is the optimal, while at the group level k=6 maximizes fitness. Plotted
with p,or = 0.9,pp0cn = 0.99, p; = 0.85, cs = 0.5, ¢; =1, note that the y-axis does not
start at 0.

individuals advance past that level. This means that there will be
fewer individuals with a level of refinement significantly above k for
critical social learners than individual learners. It follows that critical
social learners will have a higher average fitness than pure indivi-
dual learners only if k is set high enough. However, pure individual
learners will still often have a higher proportion of the population
with refinement levels over k (Fig. 5). If k is set too low, the fitness of
the critical social learners will decrease when they take over the
population (Fig. 6), thus not solving Rogers’ paradox.

In a population consisting entirely of critical social learners,
evolution will drive k to the level of refinement after which the
cost of individual learning is higher than the benefit of the
increased refinement. That is the value that best satisfies

min Log <k+ 1 —1) —c;—Log(k) >0, 24)
k 1-p;
which gives
bi
k=|——7+—|. 25
e—t=) @

This value is however different from the optimum at a group
level. If an individual decides to refine a solution further even

though it is not individually beneficial to do so, others that learn
socially from this individual will benefit from the higher level of
refinement, yielding a higher average fitness in the group (Fig. 6).

4.2. Evolutionary stability

In the logarithmic setting, the critical social learner and the
conditional social learner will have a higher fitness than any of
the other strategies presented in this paper. By calculating which
strategies are evolutionary stable for a large number of combina-
tions' of parameters, we can, just as Enquist et al. (2007) did,
establish that the critical social learner is the only ESS for most of
the parameter space. The conditional social learner is an ESS only
when individual learning is very cheap and/or efficient compared
to social learning.

5. Amount of socially transmitted behavior

Culture is reliant on information that is transmitted socially
between individuals. Because we have concentrated on strategies
that combine individual and social learning, not all information
acquired through deployment of such conditional strategies will
actually be socially transmitted.

We plotted the amount of socially transmitted information for
a wide range of parameter values and found that a surprisingly
small proportion of the information is transmitted socially, even
when the environment is very stable. Fig. 7 shows how various
parameters affect the proportion of socially transmitted informa-
tion associated with particular strategies. We can see that, across
all of the strategies, typically a minority of the information is
socially transmitted, only when social learning is significantly
more efficient than individual learning will we see more than half
of the information being transmitted socially. Conditional social
learning never reaches a proportion of socially transmitted
information that is over 70%. The critical social learner strategy
achieves 90% socially transmitted information in the best case.
The individual refiner is the only strategy that approaches having
100% of the behaviour socially transmitted.

One result that holds across all the strategies is that the proportion
of socially transmitted information is at its largest when social
learning has high fidelity (pn.¢ high) and individual learning is not

! The calculations were done with k set to the optimum for each strategy.
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Fig. 7. Proportion of information that is socially transmitted. Plotted with p,,,c, =0.9 and k=5 for the critical- and the conditional social learners.

effective (p; low). This is quite intuitive, since if individual learning is
efficient compared to social learning a lot of behavior would be
learned by trial and error. Conversely, when individual learning is
inefficient and social learning is accurate, the rare innovations have a
high probability of spreading through the population.

6. Accumulating culture over several generations

Human culture accumulates innovations and refinements over
long periods of time (Boyd and Richerson, 1985; Enquist and
Ghirlanda, 2007). Hence, it is also interesting to explore which of
the aforementioned strategies have the capacity to accumulate
cultural knowledge over several generations. For culture to be
accumulated over several generations there obviously needs to be
a way to transfer culture from one generation to the next, but for
all strategies except the pure individual learner this is satisfied by
social learning. However, secondly, for cumulative culture the
next generation needs to be able to build on this transmitted
knowledge, since merely copying it would just be keeping the
same information level within the population, rather than allow-
ing knowledge to accumulate. As, within this framework, errors in
copying can not lead to discovery of new innovations, the pure
learners can not accumulate culture over generations. The condi-
tional social learner starts by using individual learning so it is also
unable to build on something generated by a previous generation.

If we define culture accumulated over generations as any
refinement of information copied from a previous generation, then

critical social learners would occasionally generate culture that is
accumulated over generations, when they are not satisfied with just
one refinement step (k> 1). However, individual refiners would
always generate culture accumulated over generations, assuming
they got at least one level of refinement through social learning.

Another definition of cumulative culture might be as occurring
when populations reach a level of refinement that is higher than
that which is possible within just one generation. Of course, because
of how the individual learning works within this framework, any
level is possible to reach, but with a very low probability for high
levels. We can, however, look at the expected level of refinement
instead.

Generating more culture than one round of individual learning
would easily be achieved by the strategies that utilize both social
and individual learning at the same time. A suitable benchmark is
the amount learned behavior that, on average, is generated by
two attempts of individual learning. This could be achieved by
individual refiners or critical social learners with a threshold for
an OK solution that is high in relation to the expected level of
refinement found by individual learning. The requirement for
individual refiners to reach this level is that social learning is
more efficient than individual learning,

Zps,n> Zp?v

n=1 n=1

(26)

which requires a high level of current information in the popula-
tion, as well as a fairly stable environment and efficient copying.
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7. Discussion

We have explored how cumulative culture influences the
relative merits of various pure and conditional learning strategies,
including pure asocial and social learning, critical social learning,
conditional social learning and individual refiner strategies. Our
analyses reveal several results that are noteworthy.

First, we show, using pure social and individual learning
strategies, that Rogers’ Paradox is replicated in a cumulative
culture setting. That is, pure social learning does not increase
mean individual fitness, even when culture is cumulative. This
means that there is nothing inherent about the cumulative
culture context that renders Rogers (1988) result irrelevant, and
strategic solutions are required if we are to explain the demo-
graphic and ecological success of our species.

Second, we find that one strategy known to resolve Rogers’
paradox in a non-cumulative setting, namely the critical social learner
(Enquist et al., 2007), will not evolve in a cumulative setting if fitness
increases linearly with increased refinement of the solution. When
fitness increase as the logarithm, whether the critical social learner
does increase mean fitness hangs critically on to what extent the
agents are willing to satisfy with a particular level of solution to the
problem. We find that, with the critical social learner, where we set
the refinement level that is deemed an OK solution determines
whether the critical social learner will increase mean fitness, and
that high level solutions (high k) are required for this strategy to
prove a solution to Rogers’ paradox. This has important implications
that go beyond the merits of this particular strategy. Nearly all of the
research into cultural evolution has explored social learning strategies
in a non-cumulative cultural learning context, yet cumulative culture
with increasing complexity would seem to be a characteristic feature
of human culture. Our analysis suggests that researchers cannot
assume that strategies that are effective in a non-cumulative context
will prove effective in a cumulative setting, and that further cumu-
lative culture analyses are required to determine which strategies are
most effective strategies, under which conditions.

Third, we find that the conditional social learner, another
strategy known to resolve Rogers’ paradox in a non-cumulative
setting, also does so in a cumulative setting. This gives us two
possible hypotheses as to the kind of strategies that may underly
human success. Humans may have adopted a critical social
learner strategy, and copied first then refined asocially, but did
so showing ambition to achieve high levels of success, without
satisficing at lower levels of refinement. Alternatively, humans
may have pursued a conditional social learning strategy, and
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30 F [l Conditional, k = 1 [l .
[l Conditional, k=3 [] Critical, k=5
25r [ Conditional, k=5 [] Refiner
20
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Fig. 8. Total amount of learned behavior accumulated by populations of
individual learners, conditional social learners, critical social learners and individual
refiners. Plotted with: (a) p; = 0.85, p,,r = 0.95, (b) p; = 0.85, pyor = 0.9, Proch =0.9,
(€) pr=0.5, Py = 0.95, Procn = 0.9.

learned asocially first, and only copied when this was not
successful. We find that the conditional social learner excels
where asocial learning is effective and social transmission leads
to transmission error, and the critical social learner excels where
asocial learning is unlikely to be successful, but high fidelity social
transmission takes place.

It is interesting to speculate as to the possible role of high-fidelity
information transmission processes, such as teaching through direct
instruction, facilitated by verbal language, which (by increasing p;,or)
might plausibly have tipped the balance from pursuing a conditional
to a critical social learning strategy, amongst our ancestors. There is
little hard data on this issue, however, researchers have suggested
that nonhuman animals frequently appear to rely first on asocial
learning and to copy only when this is not effective (Kendal et al.,
2005). It is therefore conceivable that a switch to the social-
learning-first strategies occurred in the hominins.

This paper introduces a new method of adjusting learning
effort. In our model, natural selection acts upon the threshold
level at which critical and conditional social learners are content
with a solution and decides not to invest additional effort in
learning using another learning strategy. This implementation is
similar, but distinct from that in previous models on cumulative
cultural evolution such as McElreath (2010). In McElreath (2010)
natural selection acts directly upon the amount of effort put into
social and individual learning, influencing the efficiency of the
two different methods of acquiring information, rather than
the cutoff point between them. Future research can combine
these two implementations, creating a new set of strategies.
These strategies can for example put a large amount of effort
into social learning and only if this fails to yield an acceptable
solution, use individual learning. While it seems unlikely that
such a change would challenge the general findings in this paper,
together with learning from multiple cultural parents (see
Enquist et al., 2010), it may help explain the huge amount of
social learning we can observe in the human society.

Fourth, we introduce another strategy, which we call the
individual refiner, which might plausibly constitute a compelling
learning mechanism capable of explaining recent human history.
The individual refiner first uses social learning, and then refines
through individual learning, and continues to do so irrespective of
the level achieved. This strategy not only provides a solution to
Rogers’ paradox in the cumulative setting, but does so in a
manner that generates high fitness across a broad range of
conditions, that leads to high amounts of socially transmitted
behaviour in the population, and accumulates significantly more
innovations over the generations than any other strategy con-
sidered here (Fig. 8). In contrast, it is striking how the other
strategies do not accumulate large amounts of socially trans-
mitted behaviour (Fig. 7). Given the well-recognized reliance of
children on imitation (Boyd and Richerson, 1985; Harris and
Corriveau, 2011), it is not implausible that something like an
individual refiner strategy, or indeed a critical social learner
strategy, could be implemented in humans through a switch from
a heavy reliance on social learning at a young age to greater
reliance on asocial learning with experience. More generally,
there is some evidence that both nonhuman animals and humans
frequently pursue a copy when uncertain strategy (van Bergen
et al., 2004; Kendal et al., 2005; Harris and Corriveau, 2011),
which is consistent with their relying on social learning as a first
measure, but decreasing such reliance with experience.

In practice, while we have considered each of these strategies
in isolation, we expect some combination of these, and probably
other, strategies to be deployed by humans. Recent studies of
social learning suggest that animals and humans are capable of
combining strategies in an adaptive fashion, and we see no reason
why that should be different in a cumulative setting.
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Appendix A

The stationary distribution of culture in a population critical
social learners is given by

s Di
G, = 27)
b 1 —PuochProedsi + PiProchProedst

and

_n +ProcnGsi(PiPor A1 —DPIPlor 41 + E,nj D _jpl;wEij(l —Proedj+1)
1+ ProchPhordsi(Prdn_1—1) '

(28)
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when n > k.
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