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This article focusses on the importance of space in mathematical models of cultural
evolution, cooperation, niche construction and social learning. We discuss the benefits of
including spacial effects in these evolutionary models and illustrate how the inclusion of
space has changed accepted and long-standing results. We also briefly discuss the spatial
dynamics of these systems and suggest future directions for research investigating spatial
evolution.
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1. Introduction

“All models are wrong, but some are useful.”a

Mathematical modeling in the social and biological sciences is in many ways an
exercise in being wrong; the trick is to be wrong in the most useful possible way.
Social systems of biological agents are sufficiently complex that even tasks as appar-
ently simple as choosing parameters for a model and making assumptions about
their relations becomes extremely difficult. It is for this reason that the early mod-
els of social learning might have appeared simplistic, yet these were pioneering
attempts to elucidate a system — human culture — that is challenging to under-
stand. Human culture has, in fact, been described as the most complex phenomenon
known to science [45].

aBox, George E. P.; Norman R. Draper (1987). Empirical Model-Building and Response Surfaces,
p. 424, Wiley.
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The sheer complexity of culture has led to a variety of different modeling tech-
niques being applied to a range of different questions. Social learning and cultural
transmission systems have been modeled using mean-field approaches (e.g. popu-
lation genetic models) [4, 5], non-spatial evolutionary game theory [38], reaction-
diffusion systems that assume infinite populations [5, 19], and interacting particle
systems e.g. [12, 40, 47, 49]. It is the interacting particle systems, dealing with space
and time explicitly, and implemented as cellular automata, that we discuss here.
This review of the literature is by no means exhaustive and there are a number
of alternative approaches to modeling cultural evolution that we will be unable
to examine in detail including direct demographic models [46], and network anal-
yses [44]. We briefly discuss the effects of space in some evolutionary games but
another, more detailed discussion can be found in [41]. We concentrate instead on
simple analytical models and their spatial extensions.

Although different models may be useful in different circumstances, depending
on the scale and level of detail required to answer specific questions, they may also
give different results when applied to the same problem [7]. Thus, the choice of
method goes deeper than pure mathematical or computational convenience. Here
we will concentrate largely on individual agent-based simulation models of social
learning and niche construction, and the analytical models that preceded them. As
the theme of this issue is centered on spatially structured populations, we review
here the leap in understanding that the inclusion of spatial effects in such models
brings. Of course, cellular automata with no, or highly local, dispersal constitute
an extreme of population viscosity, and most natural populations will fall between
these and the perfect mixing non-spatial cases. Hence results from cellular automata
models should be interpreted as reflecting possible, rather than inevitable outcomes.

Social learning, defined as “learning from interactions with, or observations of,
other individuals or their products” [17], is widespread in the animal kingdom,
in both vertebrates and invertebrates, e.g. [34]. A strong reliance on social learn-
ing [4, 5, 50], as well as a huge capacity for cooperation [2, 4, 55], are both thought
to underlie the unique human ability to generate vast, diverse and cumulative cul-
tures. Social learning can thus help to explain our species’ demographic and ecolog-
ical success. The ubiquity of social learning in the animal kingdom suggests that a
reliance on it has some fitness advantage, a hypothesis that has received theoretical
support [4, 8, 47, 48]. This advantage is usually thought to derive from the gain
of useful or high pay-off information at little cost to the copier. However, this is
premised on the assumption that the copied individual possesses useful knowledge
relevant to the copier, and it is easy to envisage situations where this would not
hold. The unbiased, random copying that featured in many early models came with
considerable costs as well as the obvious benefits, since the information obtained
through social learning could easily be passed from individual to individual and
across generations, spreading, but also becoming outdated and inappropriate in a
changing environment [51]. Nonetheless, the widespread interest in social learning
stems from the idea that our human ability to learn from each other and generate
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varied and plastic cultures corresponds to an increase in absolute fitness. For exam-
ple, the ability to learn to manufacture suitable clothing, to build or find shelter,
control fire, and so forth, was plausibly instrumental in hominins being able to move
from Africa across the globe, to colonize a huge range of habitats. This flexibility
in what we can do and learn has undoubtedly enhanced our ability to colonise new
habitats and create niches [27, 29, 30, 43]. Here we review a collection of spatial
models of social learning, niche construction and cooperation, ostensibly three of
the most important social processes that shaped our evolutionary history.

2. The Effects of Space on the Evolutionary Dynamics
of Social Learning

Early models of the evolution of social learning commonly assumed a perfectly
mixed population, meaning that each individual was equally likely to interact with
any other. While this was a sensible place to start, and led to important insights, the
spatial structure of most real populations should give pause to this assumption [5].
Early models of social learning and cultural evolution built on population genetic
models to track gene and cultural trait frequencies in well-mixed populations, to
investigate the evolution of social learning, cooperation and culture, creating a
body of work today known as cultural evolution, gene-culture coevolution, or dual-
inheritance theory [4, 5, 9, 50]. The methods of genetic analysis were useful here
because evolutionary social learning systems, like ecological systems, are complex,
involving a number of individual agents whose collective, average behavior and fit-
ness can allow a trait to evolve or hinder its spread. Cavalli-Sforza and Feldman [5]
briefly considered the effects of space on the systems they studied. Although these
researchers examined the spread of information across a spatially stratified popu-
lation, rather than the effects of space on the evolution of traits, they gave a valid
insight into the possible dynamics of the invasion of social learning and innovation
(or cooperation and defection), characterizing the invasions as waves spreading in
fronts, following reaction-diffusion dynamics. These models use reaction-diffusion
methods originally designed to describe chemical reactions to take account of social
learning, innovation and the spread of information over time.

In 1988, anthropologist Alan Rogers set out to examine the relative effectiveness
of social and asocial learning [51]. Rogers’ model was a simple thought experiment
resting on a series of basic assumptions. The model assumed that there were just two
behavior patterns available to learn, matching two possible environmental states.
For each of the individuals in his population, choosing the correct behavior for
the current environment yielded a fitness pay-off. Having just two environmental
states, however, meant that all environmental changes (bar the first one) reversed
the previous change.

The model led to one of the most influential ideas in the study of the evo-
lution of social learning to date, known as Rogers’ Paradox. Rogers found that
when social learners (who copy the behavior of a randomly selected member of the
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population) are in a minority, their fitness is higher than that of asocial learners
directly sampling the environment and who have a constant fitness. However, the
fitness of social learners is frequency-dependent and declines as the proportion of
social learners increases. This happens because as asocial learners decline in number
there are fewer individuals producing accurate information about the appropriate
behavior to perform in the current environmental state. Eventually, the population
evolves to a mixed equilibrium where the fitness of social learners equals the fit-
ness of asocial learners [11, 16]. Essentially, this implies that the evolution of social
learning does nothing to improve the mean fitness of the population, since absolute
fitness is unchanged. Contrary to the notion that copying underlies increases abso-
lute fitness, the average fitness at equilibrium is the same as that in a population
of solely asocial learners. It is a testament to the surprise with which this result
was met, that the effect Rogers detected was called a paradox, when strictly it is a
non-paradoxical consequence of the insight that the effectiveness of social learning
could be dependent on its frequency in a population. Boyd and Richerson [4] exam-
ined the paradox and concluded that it would arise in any evolutionary game where
social and asocial learners played against each other and the value of the learned
information remained frequency independent. This confirmed that the problem was
general.

There have now been many proposed solutions to Rogers’ paradox, one of the
most important and general of which is the selective use of social and asocial learn-
ing embodied in the concept of “social learning strategies” [1, 4, 16, 20, 26]. The
key idea here is that natural selection is expected to fashion evolved psychologi-
cal rules that specify when an individual should copy others and from whom they
should learn. The presence of social learning strategies meant that the blind, ran-
dom social learning that was assumed in Rogers’ original model was replaced with
more strategic copying combined with interaction with, and learning directly from,
the environment.

The extensions proposed, that succeeded in solving the paradox, relaxed some of
the assumptions of Rogers’ model, making them more general than the original. For
example, in [8] Enquist et al. extended the Rogers model to allow a social learning
strategy “critical social learning” to play the evolutionary game outlined by Rogers
with social learners and asocial learners. Critical social learners would use social
learning first and would use asocial learning only if social learning failed to give the
right answer. Enquist et al. also adjusted the regime of environmental change ensur-
ing that changes in the environment could not reverse previous changes. Rogers’
model assumed that those partaking in individual learning always found the correct
solution for the environment at that time. Enquist et al. [8] relaxed this assumption
too, by introducing a parameter describing the efficacy of asocial learning, which
varied between 0 and 1.

This more general model found that the combination of adaptation and inven-
tiveness offered by critical social learning led to a solution of Rogers’ paradox in
which critical social learners always out-competed pure social learners and under
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most circumstances, asocial learners as well. This, Enquist et al. claimed, was due
to the adaptive evaluation and filtering of information. The individuals deploying
the critical social learning strategy necessarily evaluated the adaptiveness of the
solution they had obtained and, using this information, they then decided whether
to learn again (this time through asocial learning). Whether or not their results
hold when individual learners, for example, were given a similar capacity for evalu-
ation and a second chance to learn individually was not examined even though the
importance of the filtering effect itself was repeatedly stressed. The real advantage
to conditional strategies like critical social learning and its converse “conditional
social learning” where individuals first try asocial learning and use social learn-
ing only if this fails, is that they do not lead to the fitness depression associated
with pure social learning. Conditional social learning was also found to be a similar
solution to Rogers’ paradox [8, 48].

A further assumption of Enquist et al. is that the fitness functions are discrete,
meaning that a solution matching the environment gets the maximum fitness pay-off
and any other solution gets no fitness pay-off at all. A more recent simulation model
replaced binary fitness pay-offs with a pay-off distribution in which the best solution
is rewarded with a maximum pay-off while others getting progressively further away
from the ideal are rewarded a lower pay-off tending towards zero [48]. This pay-off
distribution allowed Rendell et al. to capture the harshness of an environment, with
a harsher environment giving a steeper decline in pay-offs when moving away from
the best solution. This analysis also introduced spatial or demographic structure to
the models [48].

The technical problems involved in implementing spatial, cellular automata-
based simulation models have been greatly reduced as more powerful computers
have become available. The availability of simulation software like NetLogo makes
spatially explicit cellular automata models easy to construct and analyze, while
more flexible programming environments like MATLAB and python facilitate the
construction of bespoke models. The presence of space in the Rogers’ paradox model
meant that interactions were restricted to an agent’s immediate neighbors. This
refinement led to some surprising results.

The model runs in an x×x lattice (where x2 = n) with each cell communicating
only with its closest four neighbors (Von Neumann neighborhood) or with its eight
surrounding neighbors (Moore neighborhood). Each lattice square is assigned a
value between 1 and Ns, representing the current environmental state of that lattice
square, which can change with a certain probability every model iteration. Each
square is occupied by one individual who has one of several possible social learning
strategies encoded in its genome. The strategy allows the individual to learn a
behavior, b, which takes a numerical value in the same range as those taken by the
environmental state (between 1 and Ns in this case).

Since an individual’s task is to choose a behavior to closely match its envi-
ronment, an individual’s fitness, W , is then defined by the difference between the
environmental state in the cell it occupies and the behavior it currently shows,
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minus the cost of the learning strategy encoded in its genome. W is given by the
equation

W = h−S − cstrat, (1)

where h−S is the pay-off associated with having a behavior S steps away from an
environment-matching behavior and cstrat is the cost of the strategy employed. The
parameter h can be interpreted as the harshness of the environment. As the behavior
gets further away from the optimum, the pay-off decreases at a rate dependent on h.

Each individual is assumed to reproduce with a probability proportional to their
fitness, with each giving rise to an offspring that shares the parent’s social learning
strategy and behavior prior to their own learning experiences. There is also a small
probability that some mutation event causes the offspring to gain a different strategy
to their parent’s (this is how new strategies are introduced to the population). Each
new individual replaces another at random, either in their parent’s neighborhood
or throughout the population as a whole. In each model iteration, each individual
(1) learns, (2) has their fitness evaluated and (3) may reproduce. The model ran
for 10,000 of these iterations per set of conditions with overlapping generations.

Rendell et al.’s model was applied to a grid of individuals who could interact with
their eight closest neighbors (Moore neighborhood) only, with periodic boundary
conditions. They found, somewhat surprisingly, that this extension offered a fur-
ther solution to the original Rogers’ paradox, while drawing attention to another
counter-intuitive finding: that the proportion of pure social learners could actually
continue to increase in the population even while driving fitness below that of the
original purely asocial learner population. The spatial aspect of this model also
meant that the authors were able to find some circumstances in which pure social
learning out-competed not only individual learning but both critical and conditional
social learning strategies too.

The root of this surprising finding was that the social learning genotype was
buffered from the invasion of more fit asocial learners in social learning spatial clus-
ters (Fig. 1(a)(i)), with a cluster here defined as a contiguous group of individuals
who have at least one immediate neighbor sharing their particular strategy [33].

The clustering effect in social learning models is a subtle one. Social learners
are essentially parasites, gleaning useful information from asocial learners and suf-
fering little or no cost for doing so, if the information is correct. This free informa-
tion, however, is recycled again and again, becoming outdated as the environment
changes. This means that as social learners cluster together, the individuals at the
center of the cluster, surrounded by other information parasites, will quickly decline
in fitness in a changing environment. However, as soon as one individual learner
appears, by mutation, inside the cluster, the fitness of its social learning neighbors
jumps above the population average for asocial learners. This means that asocial
learners are unable to re-invade once social learning is established, even though the
global fitness of social learners is very low. Added to this are edge effects around
the clusters themselves. The social learners at the edge of the clusters interact
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(a)

(b)

Fig. 1. Snapshots from (a) Rogers’ paradox simulations (after [48]) showing social learning clus-

ters forming as white patches in a population of asocial learners shown in black, and (ii) the
corresponding fitness of the population with higher fitness increasingly light in colour. The low
fitness of social learning clusters is clearly visible. (b) shows a snapshot from cultural niche con-
struction simulations (after [49]), (i) shows the frequencies of the different A genotypes with
(ii) showing the linkage of these genotypes with the E cultural trait.

with social learners inside the cluster and asocial learners outside. This means that
they can, in effect, ferry new information into the social learning cluster. The lead-
ing edge of a social learning cluster therefore has extremely high fitness and so
they allow the spread of social learning despite its low fitness at the center of the
cluster (Fig. 1(a)(ii)). This low fitness persists, lowering the average fitness of the
population as social learning extends its reach. Clustering in evolutionary models in
general seems to allow costly behavior, usually open to exploitation by defectors, to
persist in the population for a number of generations. This can be seen not only in
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social learning models but also in closely linked cooperation and niche-construction
models. Rendell et al.’s analysis highlights the possibility that social learning can
propagate maladaptive information in a structured population.

3. The Effects of Space on the Evolutionary Dynamics of
Niche-Construction and Cultural-Niche-Construction

Niche construction is the process by which an organism alters the environment in
which it exists and thereby modifies the selection pressures to which it is sub-
jected [30, 37, 43]. This encompasses both ecosystem engineering in which the
organism alters its environment — a beaver building a dam for instance, or a bird
building a nest — and the evolutionary feedback from the changed environment
to the constructor, its descendants, and other organisms that cohabit its niche.
Humans are particularly potent niche constructors, not least because the trans-
formations that they bring about in environmental states are reliant on cultural
knowledge (henceforth “cultural niche construction”) [28, 31, 32, 43, 54].

Analytical genetic models of niche construction [29, 30] were successful in show-
ing that organisms could, through their own actions, alter the course of their
own evolution. Such models showed that niche construction could fix genes that
would otherwise be deleterious in a population and generate unusual evolutionary
dynamics, such as momentum and inertia effects. Early models adopted a two-
locus population genetic approach, with each individual genotype having two loci,
a niche-constructing locus, E, and a resource-dependent “recipient” locus, A. Each
of these, in turn, had two possible alleles: at the E locus E, a niche constructing
allele and e a non-niche constructing allele, and at the A locus A, an allele that
increased in fitness with a change in resource frequency (thus affected by local niche
constructing activity) or a, an allele that decreased in fitness. These models, how-
ever, rested on strict assumptions of infinite population size and lack of stochastic
processes.

Silver and DiPaolo [53] assumed finite populations in a simulation framework,
allowing a certain amount of stochasticity to affect the population dynamics. They
also situated the populations in a spatially stratified, cellular automaton frame-
work. These alterations actually increased the parameter space across which niche
construction and recipient alleles could survive and become fixed in a population.
Silver and DiPaolo [53] suggested two reasons why the effects of space made such
a profound difference to the outcome of the model in terms of both likelihood of
alleles fixing in the population and the range of parameter values over which fixa-
tion was possible. Firstly, clustering buffered costly alleles for a time, allowing them
to become established in the population and to spread when conditions improved
through their own niche construction (Fig. 1(b)). Secondly, a localized resource
distribution allowed strong linkage disequilibrium (a non-random association
of independent alleles) between niche-constructing traits and recipient alleles
to form.
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In the niche-constructing case the spatial clusters were formed of a core of
homozygote niche constructors (AAEE ) with this homozygote core surrounded by a
ring of individuals forced to interact and interbreed with the non-niche-constructing
majority (AAEE homozygotes). This process of mixing formed a layer of heterozy-
gote individuals in the boundary regions of the clusters. The heterozygotes were
capable of supporting the immigration of A alleles into the boundary layer. As this
process allows the accumulation of A alleles, these alleles became sufficient in fre-
quency to form a link with E alleles and the cluster of niche constructors could
grow. In this way the costly trait existed for a short time in poor conditions while
the heterozygote layer improved the environment enough to subsequently favor
its expansion. In other words, the niche-constructing traits hitchhiked to fixation
through association with the recipient alleles that their activities favored through
selection. This model showed that the effects of space allowed niche-constructing
alleles to evolve and spread in circumstances that the more traditional non-spatial
models were unable to detect.

Rendell et al. [49] continued this work with a spatial model of cultural niche
construction, where a cultural bias for or against the niche-constructing trait was
assessed with regard to the impact on the evolution of both niche construction and
hitchhiking resource-dependent traits. This model focused on the same di-allelic
system with resource-dependent locus A, but the second niche-constructing locus
E was conceptualized as a cultural rather than genetic trait, subject to cultural
transmission biases. Rendell et al. also added a further locus B, which represented
a costly genetic trait that could increase the underlying capacity for niche con-
structing. This can usefully be conceptualized as a capacity, such as a larger brain,
that allows the individual to increase the rate or effectiveness of niche construction
at some cost.

This cultural model yielded similar results to the previous genetic model, with
the niche constructors forming clusters by chance, allowing the statistical associa-
tions to form between the recipient A allele and the niche-constructing cultural trait
E. This happened because the assortative mating between neighbors meant that the
increased resource frequency created by the E individuals favored A alleles and thus
favored E through the aforementioned positive feedback effect. The consequences
of including space are also apparent here as the random global mating in the non-
spatial model did not allow the build-up of the statistical associations between A
and E required for them to become sufficiently linked to drive the co-evolutionary
cycle. The authors found that the cultural-niche-constructing practice could over-
come some counter selection especially when a cultural bias in favor of the trait
was in effect. In almost all cases considered, the effects of space were to increase the
possibility of a niche-constructing trait spreading, and to allow the hitchhiking of
recipient traits at other loci, over an extremely broad range of conditions, including
costly alleles at the B locus that enhanced the niche-constructing capability. Thus
niche constructing traits could not only drive themselves to fixation but increase
their potency in the process.
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The spatial model in this case reflects well the kind of agriculture- or technology-
driven gene-culture coevolution to which humans are thought to have been fre-
quently subject [32, 49, 54]. The heterozygote boundaries of niche-constructing
clusters can easily be envisaged as an advancing wave of agriculture or technolog-
ical adoption such as that discussed by Kandler and Steele [19] in their analytical
reaction–diffusion models of similar processes. The important point here is that spa-
tial models have revealed potentially important processes that non-spatial models
failed to detect.

4. The Effects of Space on the Evolutionary Dynamics
of Cooperation

Models of the evolution of cooperation show similar changes in evolutionary dynam-
ics in spatial extensions of initially non-spatial models. Cooperation is an interesting
evolutionary puzzle because in fitness terms it seems to pay on a group level to coop-
erate but on a personal level it may pay to take advantage of cooperators and defect
in most cases. To understand the evolutionary models of cooperation, it is impor-
tant to understand the concept of an evolutionarily stable strategy (ESS ), a term
taken from evolutionary game theory. A strategy used to play an evolutionary game
is an ESS when it is essentially unbeatable. If the dominant strategy in a population
is an ESS, an individual with any alternative strategy cannot do better than those
already present and invade the population. Hence, in game-theoretic terminology,
cooperation does not, at first glance, appear to be an ESS. This formulation of
game theory was designed specifically to address evolutionary problems [38]. Many
models of cooperation are based on traditional games like the prisoners’ dilemma,
snowdrift game or public-goods game. Here we review a small section of this vast
literature focusing on spatial extensions of the prisoners’ dilemma and the snow-
drift game to illustrate the effects of space on two very different models of the same
biological system.

The prisoners’ dilemma is traditionally a symmetric two-person game where the
players have two possible moves: cooperate or defect. The story goes like this: you
and an accomplice have been apprehended in commission of a crime. You are faced
with two options, you can either tell the police everything you know — or keep
quiet. In the cell beside yours, your accomplice faces the same choice. If you both
choose to stay quiet, cooperating with each other, you both get a lenient sentence,
say five years. However, if one talks, defecting on their partner, while the other stays
quiet, the talker gets off scott free while the accomplice gets a maximum penalty,
the suckers’ pay-off, of ten years in prison. Finally, you could both choose to talk,
defecting on each other. In this case, you both receive a sentence that is higher
than you would have gotten had you cooperated (five years) but crucially is also
lower than the sentence you would get if you stayed quiet and your partner squealed
(ten years). Ultimately this pay-off structure means that it pays to defect regardless
of what your partner does. If you defect and they cooperate, you go free, if you defect
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Table 1. The pay-off matrices for two evolutionary cooperation games

where b is the benefit of the resource obtained through cooperating
and c is the cost associated with cooperation. The matrix shows the
pay-off awarded to an individual playing the strategy shown in the first
column when playing against that shown in the first row. (a) shows
the pay-off matrix for the prisoners dilemma where it pays to play the
same strategy as your opponent, and (b) shows the pay-off matrix for
the snowdrift game where it pays more to play the opposite of your
opponent’s strategy in any given round.

(a) Prisoners’ dilemma Cooperator Defector

Cooperator b − c (Reward) −c (Sucker)
Defector b (Temptation) 0 (Punishment)

(b) Snowdrift game

Cooperator b − c/2 (Reward) b − c (Sucker)
Defector b (Temptation) 0 (Punishment)

and they defect, you have avoided the worst outcome and the longest prison sentence
which you would have suffered had you cooperated in that case. The pay-offs in the
game follow this pattern: Temptation >Reward>Punishment> Sucker.

The pay-off matrix (shown in Table 1(a)) shows that in a one-shot interaction,
the only ESS is defection, not cooperation. However, when the game is altered to
allow repeated interactions, and to allow agents in the game a perfect memory
of their previous interactions, then strategies that can support the evolution of
cooperation in certain circumstances emerge. In Axlerod’s famous tournaments [3],
agents participated in just such an iterated prisoner’s dilemma game. The tourna-
ment revealed that TIT-FOR-TAT, where agents retaliated when their opponent
failed to cooperate but not before, was a good strategy — it won both tournaments
despite the fact that entrants to the second knew about its success in the first. It
was later shown that a TIT-FOR-TWO-TATS strategy, which would not defect
until provoked by two defections from its opponent, could have beaten the original
winner had it been entered [2]. However, the real value of the tournament was to
show that these strategies could emerge and be evaluated in a meaningful way both
in a tournament framework and through simulation.

The natural extension of this simulation framework was to introduce structured
populations, making the traditional evolutionary games explicitly spatial. One of
the advantages of introducing this kind of spatial structure is that, as with other
models, although the structure can be interpreted minimally as a geographic dis-
tance, it can also usefully be seen as a demographic structure of any sort that
restricts free global interactions between individuals. This is an especially inter-
esting distinction to make in this case since the kind of cooperation that we see
outside of humans is often localized or directed towards group members or kin,
e.g. [52, 57]. In that way any conclusions that are drawn from the spatial models
can be generalized and extended to include restricted interactions between other
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sub-groups within the population as a whole and can shed light on the effects of
in- and out-groups on the evolution of cooperation.

Spatial effects in the evolution of costly behavior like cooperation are gener-
ally thought to increase the likelihood of invasion and maintenance of strategies
that would be more open to exploitation in well-mixed populations. However, in
the case of cooperation models we find some quite counterintuitive results. While
spatial models of the evolution of social learning seem to suggest that space may
result in the spread of social learning despite the lowering of the average fitness
in the population [48], cooperation is not always supported by spatially structured
populations, and is at times hampered by the presence of space, depending on the
pay-off structure of the game [10, 13, 14].

Nowak et al. [39] show that spatial structure in stochastic simulations of iterated
prisoners’ dilemmas allowed cooperators to coexist with defectors without the need
for complex strategies. This, in part, occurred because the cooperators were able
to form spatial clusters, as with the social-learning and niche-construction mod-
els, this time avoiding exploitation by defectors. Although the clustering effect in
cooperation models is pleasingly intuitive, the effects of spatial structure is in this
case are more complex. As we shall see, the impact of space on the maintenance of
cooperation in a population is critically sensitive to the underlying update rule, as
well as the pay-off functions and structures. In the prisoners’ dilemma, for exam-
ple, the pay-off structure (Table 1(a)) shows that it pays to mirror your opponent’s
move in any given interaction. This means that individuals in agent-based simu-
lation models naturally congregate and segregate into groups acting in a similar
way. The consequence of this grouping is that individuals form spatially explicit
clusters dominated by particular strategies, helping the evolution of cooperation
in these circumstances. The effects of space in these circumstances are especially
strong. In the prisoners’ dilemma, the chance of cooperators surviving in the pop-
ulation is independent of the actual number of original cooperators, but depends
critically on their ability to form at least 3 × 3 clusters in space [12, 23, 33]. It
remains to be seen to what extent these findings based on clustering are robust to
more realistic assumptions about individual dispersal such as those considered by
Chen et al. [6].

The introduction of space leads to very different results in other strategic set-
tings. We can illustrate this with the snowdrift game, another established window
on cooperation. This game can be envisioned as two people trapped either side
of a snowdrift. Each has two options, they can dig the snow or they can wait. If
both dig, both get past the snowdrift, sharing the cost of digging. If both wait
neither gets past. However if one person digs and the other waits, both get past
the snowdrift but one shoulders the entire cost of digging the snow. This pay-off
matrix (Table 1(b)) leads to quite different dynamics to the better-known prisoners’
dilemma. In this case, unlike the prisoners’ dilemma, it pays to do the opposite to
what your opponent does in any given interaction and the pay-offs follow a slightly
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different pattern: Temptation>Reward>Sucker>Punishment. This force opposes
the formation of clusters of either cooperators or defectors.

Hauert and Doebeli [13] demonstrate a change in dynamics in the case of the
snowdrift game as compared to the prisoners dilemma. In the spatial snowdrift
game, the effect of space is to reduce the amount of cooperation sustained in the
population compared to the non-spatial model and in some cases cause cooperation
to go extinct. The clusters that form in the snowdrift game are diffuse, expanding
“dendritic structures” which expand as individuals vie to border those exhibiting a
strategy opposite to their own. (Note, the “pays to do the opposite” finding bears
some resemblance to the findings of [25] which found that it only pays to niche
construct to produce a resource when the manufactured resource is not otherwise
available in the environment.)

The patterns that emerge from spatial models of cooperation can be very inter-
esting. They can be chaotic in certain cases with kaleidoscopic patterns emerging
from non-stochastic runs of prisoners’ dilemma simulations [40] or enter limit cycles
of cooperation and defection [15]. Detailed examinations of other strategies that can
compete within the hawk/dove or snowdrift type of model show that spatial effects
can also support strategies that non-spatial models cannot and that incorporat-
ing social learning and cultural transmission of strategies can also support more
cooperation in these systems [22].

5. Discussion

Interesting comparisons can be drawn between the spatial models of social evo-
lutionary systems discussed above with regard to the shapes, sizes and processes
affecting the clustering of costly behavior. The clusters originate and are maintained
by different processes in each case, nonetheless giving rise to strikingly similar struc-
tures. The subtle differences in the mechanisms that bring and keep these clusters
together can also help to elucidate the differences in the microscopic processes at
work in each system. For example, groups of cooperators forming in spatial pris-
oners’ dilemma games are held together by inward evolutionary forces, caused by
the advantage to cooperating individuals of having cooperating neighbors. Con-
versely, social learning clusters are held together by the inability of asocial learners
to survive where social learners surround them. Further examining the structure
of these clusters could help us to identify the different processes causing successful
or unsuccessful invasions of particular strategies into populations [33]. The spatial-
niche-construction models restrict the benefits of niche-construction to the immedi-
ate locale of the constructor. It would be a natural — and fascinating — extension
to consider allowing niche constructors to produce (or deplete) resources for (or
produced by) their neighbors. Such an extension potentially takes such models into
the sphere of spatial cooperation models and at the same time addresses the concern
that models of cooperation have neglected ecological processes [42].

1150001-13



March 6, 2012 14:6 WSPC/S0219-5259 169-ACS 1150001

L. Fogarty, L. Rendell and K. N. Laland

The inclusion of space in models examining the evolution of niche construction
and cooperation, in particular, has also enabled more empirical and experimental
testing of the models. Many tests have now been performed using bacteria in media
allowing or restricting free mixing of individuals and sharing of resources. This
paradigm has been used to examine the evolution of cooperation, e.g. [24, 35] and
niche construction, e.g. [21] and would have been difficult or impossible to interpret
correctly in the light of purely non-spatial models.

The primary advantage of extending models to include the effects of spatial
(or demographic) stratification is realism, and therefore, validity. It is abundantly
obvious that we live in a spatial world. We interact differentially with individu-
als who live and work in our neighborhoods, we interact less with those who do
not. This is, of course, by no means a strict rule and further generalizations of
the models discussed above could usefully look at a more “small world” type of
stratification [56] where the likelihood of interacting with distant members of the
population is greater than zero or that incorporate levels of dispersal that better
capture biological reality. As we add more and more complex interactions in space
and demography to our models, we allow the models to capture what is clearly
an important effect that previously we may have failed to take into account. The
models we have discussed here are simulation models but this does not have to
be the case: some spatial systems can be modeled using equations like reaction–
diffusion equations or spatially implicit analytical models, e.g. [36]. These models
have the advantage of eliminating the problem that spatially explicit agent-based
models necessarily disallow continuous time processes. Discrete time and updating
rules in these models have been shown to change results of evolutionary simulations
considerably [18].

The advantage of using the simulation approach, though, is that it is relatively
easy to extend non-spatial, analytical descriptions of different systems to account
for the effects of space without redesigning an entire model from scratch and with-
out reducing the ability to compare between spatial and non-spatial results. The
fact that the results from spatial models differ, sometimes substantially, from their
non-spatial ancestors, coupled with the fact that spatial stratification is observ-
able in most animal systems means that these models may more accurately reflect
the environment in which animals, ourselves included, learn and evolve. This,
in turn, may mean that the most informative models are by necessity spatially
explicit ones.
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