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Social networks can result in directed social transmission of learned information, thus influencing

how innovations spread through populations. Here we presented shoals of threespine sticklebacks

(Gasterosteous aculeatus) with two identical foraging tasks and applied network-based diffusion analysis

(NBDA) to determine whether the order in which individuals in a social group contacted and solved

the tasks was affected by the group’s network structure. We found strong evidence for a social effect

on discovery of the foraging tasks with individuals tending to discover a task sooner when others in

their group had previously done so, and with the spread of discovery of the foraging tasks influenced

by groups’ social networks. However, the same patterns of association did not reliably predict spread

of solution to the tasks, suggesting that social interactions affected the time at which the tasks were dis-

covered, but not the latency to its solution following discovery. The present analysis, one of the first

applications of NBDA to a natural animal system, illustrates how NBDA can lead to insight into the

mechanisms supporting behaviour acquisition that more conventional statistical approaches might

miss. Importantly, we provide the first compelling evidence that the spread of novel behaviours can

result from social learning in the absence of social transmission, a phenomenon that we refer to as an

untransmitted social effect on learning.

Keywords: social learning; local enhancement; social networks; threespine sticklebacks; network-based
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1. INTRODUCTION
Innovation can be said to occur when a new behaviour

pattern is invented or when an existing behaviour pattern

is modified to suit a novel context [1]. Behavioural

innovation is an important facet of phenotypic plasticity

enabling organisms to exploit new food sources, to

improve their efficiency of using a familiar resource or

to respond to other changes in their environment [1].

Social learning can lead to the transmission of behaviour-

al innovations, potentially allowing innovations to spread

rapidly through populations [2]. Examples of social trans-

mission of behavioural innovations include Japanese

macaques, Macaca fuscata, washing sweet potatoes [3]

and British titmice, Parus spp., opening milk bottles [4,5].

Social learning is broadly defined as learning that is

influenced by observation of, or interaction with, another

individual or the products of its behaviour [6]. Despite

extensive recent research into animal social learning

[6–9], the social factors influencing learning of inno-

vations by individuals in freely interacting groups

remain poorly understood [10–12]. It is commonly sup-

posed that social learning, where it occurs, results in
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social transmission, i.e. where performance of a behaviour

by one individual makes it more likely that other individ-

uals will add the behaviour to their repertoires. However,

in most cases in which the spread of a behavioural

innovation has been reported in natural or captive popu-

lations, the possibility cannot be excluded that either

asocial learning caused the observed change in behaviour,

or that the learned behaviour of one individual facilitates

acquisition of behaviour by others in more subtle ways

than are normally considered [13–15].

Furthermore, many previous theoretical and empirical

studies have tended to assume that all members of

a population are equally likely to transmit or receive infor-

mation [11]. Although animals might pay equal attention

to the actions of each group member, Coussi-Korbel &

Fragaszy [10] suggest that this is unlikely and that, to

the contrary, animals within a group are more likely

to learn from some individuals than from others.

Indeed, this notion of ‘directed social learning’ suggests

that animals either might copy strategically, for instance,

by attending to the behaviour of older or more successful

individuals [16] or might copy their nearest neighbours

[17]. Consistent with the expectation that information

flow through animal populations will not be random,

results of several studies suggest that captive and wild

animal populations (e.g. guppies, Poecilia reticulata

[18,19], bottlenose dolphins, Tursiops truncates [20] and
This journal is q 2012 The Royal Society
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starlings, Sturnus vulgaris [12]) are characterized by non-

random social networks [19].

A variety of phenotypic factors have been shown to

generate non-random networks within animal groups,

including assortment with respect to sex [11], familiarity

[21], size [22] and hunger level [23], which may lead to

association patterns that shape the route of information

transmission. Network-based diffusion analysis (NBDA

[24]) is a recently developed method of data analysis of

potential use in the field of animal social learning that

allows non-random social transmission, as well as other

social effects on behaviour, to be detected and quantified.

Here we apply NBDA to captive groups of threespined

sticklebacks (Gasterosteus aculeatus) presented with either

one or two foraging tasks, to provide evidence of any

non-random patterns of social influence on task discovery

and solution within shoals.

In NBDA, the rate that individuals move from a naive to

an informed state (having solved a task) is modelled as a

function of the total of their network connections to

informed individuals. Thus, NBDA implicitly assumes

that social learning will be manifest as social transmis-

sion. However, in a foraging task, social influences other

than social transmission might operate independently to

decrease either the latency with which naive individuals dis-

cover the task or the latency with which they subsequently

solve it. Furthermore, a fully informed individual who has

solved a task might exert more influence on the naive than

an individual who has merely discovered that task. To inves-

tigate such possibilities, we extend the NBDA model to

multiple states, analysing the process of task solution as

comprising two identifiable stages, discovery and solution,

thus allowing specific types of social influence on each to

be both detected and quantified.

Fish are well suited to the study of social diffusions in the

laboratory. Both the processes of social learning and

the contexts in which it occurs have been well studied in

fishes (for review, see [25–27]), which offer several practi-

cal advantages for the study of directed social learning. The

diffusion of innovations and animal traditions are group-

level phenomena and, accordingly, their study is facilitated

not only by using replicate animals, but by using replicate

populations as well [27]. Populations of small fishes are

easy to maintain in the laboratory and fishes are frequent

subjects in experiments on social learning.
2. MATERIAL AND METHODS
(a) Subjects and apparatus

Subjects were 160 threespined sticklebacks maintained in 16

groups of 10, with eight groups used in each experiment. We

used no individuals displaying signs of nuptial coloration or

gravidity as reproductive state has been shown to affect an

individual’s reliance on social learning in sticklebacks [28].

To encourage size-assortative shoaling [23], and thereby

to promote heterogeneity of social network structures, we

deliberately generated variation in body size within groups.

Individuals ranged from 38 to 71 mm in length with an

overall mean within-group range of 14.8 mm.

We captured subjects using mesh cage traps from the Kin-

nessburn, St Andrews, UK (56.33.4925 N, 22.78.8151 W)

between June and September, 2010 and held them in groups

of 40 in 60 l tanks at a temperature of 88C, and fed them daily
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with frozen chironomid (Chironomus sp.) larvae for a minimum

of two weeks before testing (July to October, 2010).

We tested groups of 10 individually marked fish [29] in a

rectangular black test tank measuring 60 � 80 cm. To ensure

that vertical distance within the water column between indi-

viduals did not confound estimates of inter-individual

distances, we filled the test tank with filtered tap water to a

depth of only 5 cm. The test tank had a gravel substrate

1 cm in depth, and 10 black, pyramid-shaped obstacles

(measuring 10 cm diameter at the base and 6 cm high)

placed at regular intervals throughout the tank (see the elec-

tronic supplementary material), allowing only associating

individuals to see one another while allowing the exper-

imenter to view all fish. We filmed each test trial using a

Canon HG20 video camera held 1.2 m above the test tank.

We conducted both one-task and two-task experiments,

involving identical foraging tasks, comprising a transparent

cylindrical tube measuring 24 cm in length and 7 cm in

height placed horizontally on the gravel substrate at each

end of the test tank. We inserted 15 ml of defrosted chirono-

mid larvae suspended in water into one end of the tubes,

which had 15 small holes (2 mm diameter) allowing olfactory

cues from larvae to escape. The other end of each tube was

open and its circumference clearly marked with black electri-

cal tape. Consequently, although fish could see and smell

food at both ends of each tube, they could gain access to

food only at one end.

We predicted that diffusion of information regarding both

the location of food and the solution to the tasks would be

influenced by the social network, with individuals that had

a high level of association with one another being more

likely to discover and solve the tasks in succession and with

more similar latencies than individuals that had a low level

of association.

(b) Procedure

(i) Determining the network structure

To describe social networks, for each experiment we indivi-

dually placed each of eight groups of 10 fish into the test

tank and allowed each group to settle and explore the tank

for a period of 15 min before filming for 2 h. We sub-

sequently took point samples from the film at 6 min

intervals, giving a total of 20 observations for each group.

We defined individuals as associating if they were within four

body lengths (defined as the mean body length of a group’s

members) of one another from head to head, a distance gener-

ally accepted as indicative of shoaling in fishes [30]. We then

created an association matrix based upon the proportion of

point samples that each fish was observed to be within four

body lengths of each of the other fish in its group.

(ii) Testing for social learning

At the end of the 2 h filming of a group, we introduced the

foraging tasks and filmed the group for a further 45 min,

after which the trial ended and we removed all fish from

the experiment. We recorded both the latency with which

each individual first discovered each task (defined as occur-

ring when an individual was seen striking at food through

the transparent tube) and the latency with which each indi-

vidual first solved each task (defined as consuming food

within the tube). We scored only the first 20 min of video

footage after the first fish in each group solved each task at

which time food items were still visible inside the tube in

all trials.
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In addition to recording the latency for discovery and sol-

ution of the tasks, we also recorded the latency with which

each fish entered an arbitrary area (measuring 20 � 10 cm)

within the tank. This control location contained no food

and no distinctive topographical features. In our analysis, we

compared inter-individual latencies to ‘discover’ the control

location with similar latencies to discover the tasks. This com-

parison allowed us to distinguish between effects of affiliation

and effects of exposure to individuals in the vicinity of tasks.

(iii) Network-based diffusion analysis

We used NBDA [2,24] to determine whether the sequence with

which subjects discovered and/or solved the tasks was correlated

with the pattern of association observed between individuals in a

group (i.e. the social network). NBDA was designed to reveal

social learning when non-random patterns of association are

detected. Inference of social learning using NBDA results

from comparing models that include social learning with

models with only asocial learning to see whether ‘social-

learning’ models provide a better fit to the observed data than

‘asocial-learning’ models. When social learning is included in

an NBDA model, the rate of social transmission between

‘informed’ and ‘naive’ individuals is assumed to be proportional

to the strength of the network connection between them.

We used the order of acquisition diffusion analysis

(OADA) variant of NBDA [2], which is sensitive only to

the order in which individuals acquire a trait, not to latencies

of acquisition (see the electronic supplementary material for

justification). We analysed order of acquisition across all

groups, treating the data from all eight groups as a single dif-

fusion network, with zero network connections between

individuals in different groups. This treatment of the data

renders the OADA sensitive to between-group differences.

If consecutive discoverers/solvers tend to be from the same

group, this is consistent with the hypothesis that they are

learning from each other.

We also modified the OADA model to allow for multiple

states (see the electronic supplementary material for details).

Existing NBDA approaches assume that individuals move

directly from a ‘naive’ to ‘informed’ state when they first

solve a task [31]. Here we wished to tease apart social effects

influencing the rate at which individuals discovered and

solved the task (cf. [12]). We assumed that at any given time

an individual could be in one of three states: ‘naive’ (has not

discovered the task), ‘discovered’ (has discovered the task)

and assumed further that discovered individuals could be

either a ‘non-solver’ (has not solved the task) or ‘solver’ (has

solved the task). Each task was treated separately, for example,

an individual classed as a ‘solver’ for the left-hand task could

still be ‘naive’ for the right-hand task.

We fitted separate OADA models for: (i) the rate at which

naive individuals discovered the task, and (ii) the rate at

which ‘discovered’ individuals solved the task (see the elec-

tronic supplementary material). We allowed for the fact

that both rate of discovery and rate of solving might be

affected by network connections to individuals that: (i) had

discovered the task or (ii) had solved the task.

We also included body length as an individual-level variable

(entered as a difference from group mean body length) and

treated ‘group’ as a factor, to allow for the possibility that

groups might differ in their rates of asocial discovery or solving.

We considered social learning and group differences in asocial

rates of learning as alternative explanations for differences

between groups and consequently did not include both
Proc. R. Soc. B
variables in the same model although we considered models

including all other possible combinations of variables.

Instead of using a model-selection procedure to choose a

best model, we used a model averaging approach, using

Akaike’s information criterion, corrected for sample size

(AICc) [32]. Inferences based on model averaging take into

account uncertainty as to which model is best. AICc esti-

mates the Kullback–Leibler (K–L) information for a

model (i.e. the extent to which the predicted distribution

for the dependent variable approximates its true distri-

bution). The AICc allows us to calculate an Akaike weight

for each model that gives the probability that the model is

the actual best K–L model (that with the lowest K–L infor-

mation) out of those considered, allowing for sampling

variation. By summing Akaike weights for all models that

include a specific variable, we obtain the probability that a

variable is in the best K–L model, thus quantifying support

the data give for an effect of a variable [32].

This approach is preferable to calculating a p-value to

quantify the strength of evidence for each effect, because:

(i) the p-value depends on which model is chosen and conse-

quently does not account for model uncertainty, and (ii) a

large p-value tells us little about the strength of evidence

against an effect (i.e. while statistical power can be calcu-

lated, the power has to be for a specified, usually arbitrary

effect sizes [33]). Therefore, for each variable considered,

we give its total Akaike weight (as a %) and model-averaged

estimate [32]. We also provide unconditional 95% confi-

dence intervals using Burnham & Anderson’s [32] method

for adjusting profile likelihood confidence intervals for

model selection uncertainty.

(iv) Comparison of network-specific and homogeneous effects

Our OADA analysis is sensitive to between-group differences

in discovery and solving times. Consequently, evidence of an

effect of network connections to other ‘discovered’ and/or

‘solved’ individuals might reflect an effect that operates

equally among all individuals in each group, rather than an

effect that follows the social network. To tease apart

network-specific and homogeneous (i.e. non-network-

specific) effects, we fitted alternative versions of models for

rate of discovery and for solving. To reduce the set of

models to be fitted, we constrained all models to include

effects for which there was more support for than there was

against (greater than 50%). To assess whether each social

effect operated homogeneously within groups (i.e. indepen-

dent of patterns of association), we replaced the social

network with a homogeneous network (connection of strength

1 for individuals in the same group, 0 for those in a different

group) for each effect. We also allowed for the possibility of

network-specific and homogeneous components to each

effect (electronic supplementary material, §7).

(v) Social transmission versus an untransmitted social effect

NBDA was designed such that evidence for s . 0 could be

used to infer social transmission of a trait. However, an s . 0

need not indicate social transmission of discovery of a food

patch. Closely associated ‘undiscovered’ individuals might dis-

cover the food source at a similar time simply because they

tend to move about together, and movement in a group is dis-

tinct from social transmission. In social transmission, one

individual discovering a food patch causes associated individ-

uals to discover the food patch sooner than they otherwise

would. In contrast, we refer to the simultaneous discovery of



Table 1. Two-option NBDA results for naive! discovered and discovered non-solver! solver. Italic font indicates there was

more support for an effect than against (greater than 50%).

variable d.f.
support (sum of
Akaike weights) (%)

model-averaged
effect estimatea

unconditional 95%
confidence intervalb

(a) Two option NBDA results for naive! discovered
total network connection to discoverers: option specific 1 97.8 1.4 [0.32, 4.4]
total network connection to discoverers: cross option 1 5.6 0.007 —
total network connection to solvers: option specificc 1 24.2 0.094 —
total network connection to solvers: cross optionc 1 75.4 1.4 [0.20,6.5]

body length (mm) 1 91.3 0.048 [0.016,0.096]
bias towards right option 1 26.3 1.0�
group 7 1.1 1.0� —
discovered other option 1 81.8 0.29� [0�, 0.78�]

solved other optionc 1 32.7 0.02�
(b) two-option NBDA results for discovered non-solver ! solver
total network connection to discoverers: option specific 1 79.9 3.9 [0.334, 590]
total network connection to discoverers: cross option 1 26.5 0.38 —
total network connection to solvers: option specific 1 6.8 0.048 —
total network connection to solvers: cross option 1 12.6 0.087 —

body length (mm) 1 82.4 20.171 [20.94,20.0049]
bias towards right option 1 28.6 1.1�
group 7 ,0.1 1.0� —
discovered other option 1 30.3 1.2�
solved other optionc 1 47.2 1.9�
aSocial effects are estimated relative to the mean rate of asocial discovery, e.g. the value 1.4 in table 1a signifies that an average individual
with one unit of total association to discoverers of an option is 2.4 times faster to discover the same option than an average individual with
no connections to discoverers of that option. The effect of body length is estimated as the logarithm of the multiplicative difference per
millimetre in body size (standard in modelling rates), e.g. in table 1a, 0.048 indicates that the asocial rate of discovery for a fish of 50 mm
would be exp (5 � 0.048) ¼ 1.27 times greater than that for a fish of 45 mm. For all other effects, we give the estimated multiplicative
difference in rate, for group this is for the most extreme groups.
bUnconditional 95% confidence intervals were calculated using a computationally intensive profile likelihood procedure (see the electronic
supplementary material, §4) so we only calculated these for variables with support greater than 50%.
cThe effect of association to solvers is estimated as the effect over and above that of their effect as discoverers. Likewise the effect of having
solved the other option is estimated as the effect over and above the effect of having discovered the other option.
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a food patch by naive individuals moving in a group as an

‘untransmitted’ social effect. The key distinction here is that,

in the case of social transmission, knowledgeable individuals

pass on some of their knowledge to others, whereas with an

untransmitted social effect, the individuals that facilitate learn-

ing in others are uniformed. Perhaps slightly confusingly, such

untransmitted social effects often meet accepted definitions of

social learning [6], which encompass any social process that

facilitates learning in others. Note that simple movement in a

group can account only for an apparent social transmission

effect on the rate of discovery, not on the rate of solving.

To separate untransmitted and transmitted social effects,

we reasoned that untransmitted social effects would be seen

whenever individuals first entered any arbitrary area within

the test arena. As mentioned in §2, we identified an arbitrary

control patch that contained no food in the test arena and

recorded the time at which each individual in each group

first entered the control patch. We then treated these data

as an additional set of diffusions, and estimated the s par-

ameter for both control and real patches, i.e. sR and sC,

respectively. We then estimated the strength of social trans-

mission as the difference in s parameters between real and

control patches (sR 2 sC). We included only body length as

an additional covariate in this analysis since body length

was strongly supported by the Akaike weights (table 1a).
3. RESULTS
As the one-task and two-task experiments generate consist-

ent findings, we present only the two-task experiment
Proc. R. Soc. B
results, but emphasize that the key findings are repli-

cated in the one-task experiment (see the electronic

supplementary material).
(a) First discovery

There were no trials in which all individuals within a

group discovered both options, with the number of disco-

verers of each option ranging from three to eight. A

minimum of seven individuals discovered one or the

other of the options with 112 first discoveries across

both individuals and options (figure 1a). Diffusion

curves for discovery time (figure 1a) generally reveal a

rapid increase in number of individuals discovering one

or both options after initial discovery by one individual.

Both estimates from the NBDA and support for each

variable are shown in table 1a. There was strong evidence

(total Akaike weight ¼ 97.8%) that being well connected

to others who had already discovered an option increased

the probability that a naive individual would be the next

to discover that option, providing clear evidence of

social learning. The magnitude of this effect was esti-

mated to be a linear increase of 1.5 times (95% CI ¼

[0.32, 4.4]) the average asocial rate of discovery for

every unit of network strength. However, there was no

evidence for social transmission of the patch location,

with the contrast between real and control food patches

(sR 2 sC) estimated at 22.48 (95% CI: [211.0,1.4]), a

result in the opposite direction to that expected if social

transmission were occurring. The present finding that
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Figure 1. The diffusion curves for the times of (a) first discovery, and (b) first solving, showing times for both the left- and right-
hand options. Each colour represents a different group.
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effects of group membership at real patches were not

greater than those at control patches suggests that the

social effect on discovery may be a result of associated

individuals encountering the task at approximately the

same time because of their influence on each other’s

movements. There was little evidence that being well-

connected to solvers of an option facilitated discovery of

that option, and strong evidence against an effect of

connectedness to discoverers generalizing across options,

implying that discovery was a location-specific effect.

Surprisingly, there was some support for the hypoth-

esis that individuals were more likely to discover an

option next if they were well connected to individuals

who had solved the other option than if they were not

so connected. This effect was estimated to be similar in

magnitude to the option-specific effect of discoverers

(1.4, 95% CI ¼ [0.20,6.5]). There is also support for an

effect of body length, with larger individuals being more

likely than smaller individuals to discover an option

first, as well as evidence that individuals that had discov-

ered one option were less likely to discover the other (see

table 1a for estimated effects and confidence intervals).

(b) First solve

In all eight trials, each option was solved by at least one

individual within the allotted time with six individuals

solving the task in three of the groups and a total of

39 first solves across all individuals and options. Again,

discoverers did not move food items outside of the tube.

As confirmed by the NBDA analysis, diffusion curves

for the solving times of the foraging tasks (figure 1b)
Proc. R. Soc. B
show individuals solving both options at fairly regular

intervals rather than in collective bursts, suggesting that

solvers were not influenced by other solvers.

Both estimates from the NBDA and support for each

variable are shown in table 1b. Probably as a result of

the low number of total solvers (39 of 80 subjects),

there is no strong support for any one effect. However,

total support for models in which at least one social

effect is operating is high (93.3%), and there is little sup-

port for the alternative hypothesis of underlying group

differences in rate of discovery of the two options. A

likely explanation for the pattern of data is that individ-

uals that had already discovered one option and were

closely connected to other discoverers of that option

were more likely to solve that option than other individ-

uals (support ¼ 77.9%), with the effect estimated at 3.9

(95% CI ¼ [0.334, 590]). There is also some evidence

for an effect of body size on solving, with smaller individ-

uals who had already discovered an option tending to

solve it sooner than larger discoverers.

(c) Comparison of network-specific and

homogeneous effects

Support for models that included social effects on

learning, either specific to the social network and/or

non-network-based group effects, is shown in the electro-

nic supplementary material, table S2. There is a fairly

clear indication that, if there is a social effect on the rate

at which discoverers first solve the task, it follows the

social network (support ¼ 88.5%). Effects of the social

network are less clear on the rate at which naive
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individuals discover the task. Possibly, individuals are

attracted to an option by strongly connected individuals

that have already solved an option, and consequently, are

more likely to return to that option and/or remain near it

than individuals weakly connected to solvers, making it

likely that they will solve that option more rapidly than indi-

viduals only weakly connected to solvers. Counteracting

this effect is evidence for a second process whereby, when

many individuals in a group have solved an option, those

group members that had not yet discovered the alternative

option are more likely to do so, perhaps because the popu-

lar option becomes too crowded to solve. In either case,

there is clear evidence of social learning.

We also carried out a single-task experiment, on differ-

ent individuals of the same species, which we have

described in detail in electronic supplementary material,

§8. This experiment followed the exact same procedure

as the one discussed here, except for the use of only one

foraging task instead of two. The results of this exper-

iment are consistent with that described above. There

was again strong support across groups for the hypothesis

that naive individuals well connected to others who had

discovered the task were more likely than individuals

weakly associated with discoverers to be the next to

discover the task themselves (total Akaike weight ¼

99.8%), providing clear evidence of social learning.

There was also no strong evidence for social transmission

of patch location, with the contrast between real and con-

trol food patches (sR 2 sC) estimated at 1.84 (95% CI:

[23.9,11.3]). These findings, like those of the present

experiment, suggest an untransmitted social effect

underpinning the observed diffusions of task discovery.

Social transmission also did not influence the rate at

which individuals solved the task, either individually or

as a group.
4. DISCUSSION
We present one of the first examples of NBDA of the be-

haviour of non-human animals. By breaking the processes

of task solution into identifiable stages, specific types of

social influence were both characterized and quantified.

(a) Discovery

We found strong evidence for a social effect of the discovery

of the novel foraging tasks, with individuals tending to

discover a task sooner when others in their group had pre-

viously done so. However, overall we find no evidence that

this effect is the result of the task location being socially

transmitted between individuals, since the social effect on

‘discovery’ of an arbitrary empty control patch appeared

as strong as discovery of a patch where foraging was poss-

ible. These findings suggest that an untransmitted social

effect underlies the observed diffusions—almost certainly

the influence of fish on one another’s movements.

We note that, in the absence of NBDA, most research-

ers would have interpreted the evidence of diffusion along

a social network as indicative of social transmission,

although the possibility of asocial learning underlying dif-

fusions has long been recognized [2,14,34]. Here, use of

NBDA provided evidence for a third possibility: the social

learning of task location in the absence of social trans-

mission. There is unambiguous evidence for both

learning and a social influence on latencies to learn, but
Proc. R. Soc. B
no evidence of social transmission. The social effect on

‘discovery’ of an arbitrary empty control patch appeared

as strong as the social effect on discovery of the tasks.

A number of previous studies of social learning in fish

report social effects consistent with local enhancement

but equally consistent with the hypothesis of a mutually

reinforcing tendency of individuals that have discovered a

potential food source to remain near that food source and

eventually learn to exploit it [35–38]. The present findings

are of particular significance in that they draw attention to

the possibility that many natural diffusions may similarly

result from untransmitted social effects rather than from

either social transmission or asocial learning.
(b) Solution

Our findings also provide little evidence of social transmis-

sion of solution to the task. A higher level of association

with previous solvers did not predict a higher rate of solving

the task and gaining access to food. Social transmission

would require that association with those that had solved

the task leads to a higher rate of transition from a naive to

an informed state: either increasing the rate of discovery

or the subsequent rate of solving. Here we find evidence

of neither. Nonetheless, we did find evidence of a social

effect on solving the task; a higher degree of association

with those that had previously discovered the task predicted

a higher rate of solving it.

Unexpectedly, we found that associating with others

that have previously solved one option leads to an

increased rate of discovery of the remaining option. Two

processes, stimulus enhancement and competition, pro-

vide plausible explanations. Stimulus enhancement [39]

is a process similar to local enhancement. However, in

cases of stimulus enhancement, individuals attract the

attention of others not to a particular location but to a

class of objects. Because the two tasks were identical,

stimulus enhancement of one task would have led to

increased attention to the other. Alternatively, when one

of the tasks had attracted many foragers, remaining indi-

viduals may have sought an alternative foraging location

where there was less competition for food.
5. CONCLUSION
Our results suggest that social influences on learning can be

strong, even without direct transmission of information

(e.g. patch locations or task solutions) between individuals.

Individuals within each group tended to discover a food

patch sooner when others in their group had previously

done so, but this temporal pattern of discovery did not

appear to be a result of social transmission per se. Rather,

the tendency of fish to travel in groups resulted in increased

simultaneity of discovery, followed by individual learning of

the solution. Knowledge as to how to solve a task and

acquire food did not spread from informed to uninformed

individuals; rather uniformed individuals learned together,

but nonetheless benefited from the elevated rate of patch

discovery associated with social foraging. Our results are

replicated in another experiment using only one foraging

task (electronic supplementary material, §8), giving signifi-

cant strength to our arguments. The methods of analysis

employed here could be widely used by those studying dif-

fusion of social information through populations to provide
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finer characterization of the nature of social influences on

diffusion of innovations through social groups.
Research supported in part by a BBSRC grant to K.N.L. and
W.H. (BB/D015812/1) and an ERC Advanced grant to
K.N.L. (EVOCULTURE, ref 232823).
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