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Organisms often respond to environmental change phenotypically, through learning strategies that
enhance fitness in variable and changing conditions. But which strategies should we expect in population
exposed to those conditions? We address this question by developing a mathematical model that
specifies the consequences of different mixtures of individual and social learning strategies on the
frequencies of different cultural variants in temporally and spatially changing environments. Assuming
that alternative cultural variants are differently well-adapted to diverse environmental conditions, we
are able to evaluate which mixture of learning strategies maximises the mean fitness of the population.
We find that, even in rapidly changing environments, a high proportion of the population will always
engage in social learning. In those environments, the highest adaptation levels are achieved through
relatively high fractions of individual learning and a strong conformist bias. We establish a negative
relationship between the proportion of the population learning socially and the strength of conformity
operating in a population: strong conformity requires fewer conformists (i.e. larger proportion of
individual learning), while many conformists can only be found when conformist transmission is weak.
Investigations of cultural diversity show that in frequently changing environments high levels of
adaptation require high level of cultural diversity. Finally, we demonstrate how the developed
mathematical framework can be applied to time series of usage or occurrence data of cultural traits.
Using Approximate Bayesian Computation we are able to infer information about the underlying learning
processes that could have produced observed patterns of variation in the dataset.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A given cultural trait (for instance, a subsistence strategy) might
exhibit a number of different functionally equivalent variant forms
(for example hunting, farming, fishing) that differ in the degree of
benefit that they confer depending on the environmental setting.
Accordingly, individuals experiencing changing environmental
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conditions frequently face the task of choosing between cultural
variants according to their apparent utility. That they are able to do
so effectively is illustrated by the observation that human behavioural
ecologists can predict human behaviour by assuming individuals to be
well-adapted to their environment (Borgerhoff-Mulder, 1991; Day and
Taylor, 1996).

Broadly speaking, an individual's choice between alternative
cultural variants can be guided by different individual and
social learning strategies. While social learning refers to learning
that is influenced by observation of or interaction with other
individuals or its products individual learning refers to learning
(e.g. trial and error) that does not involve social interactions or any
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information provided by others (Heyes, 1994). Given the fact that
social human learning is rule governed, with many possible rules
(Boyd and Richerson, 1985; Laland, 2004; McElreath et al., 2011),
we can ask which learning strategy, or strategies, should be
expected in populations living in temporally and spatially chan-
ging environments (where ‘environments’ encompass social, eco-
logical and physical variables).

Formal population-genetic and game-theory analyses have
explored this question by determining the evolutionary stable
strategies, and thereby identifying the strategies that would evolve
under natural selection. It has been suggested that individual and
social learning are favoured by natural selection when temporal
environmental changes occur at relatively short and long intervals,
respectively (e.g. (Aoki et al., 2005; Boyd and Richerson, 1985;
Boyd and Richerson, 1988; Feldman et al., 1996; Rogers 1988)).
Boyd and Richerson (Boyd and Richerson, 1985; Boyd and
Richerson, 1988) developed a series of mathematical models to
understand the conditions under which individual and social
learning are adaptive. In their models, individual learning allows
an individual to acquire behaviour that is adaptive to the local
environments by evaluating environmental cues. This process may,
depending on the quality of these cues, lead to errors. However, if
environmental cues are ambiguous, individuals may benefit from
copying the behaviour of another individual from the previous
generation. The challenge the individuals face is to match the
correct behaviour to the current environmental conditions. Boyd
and Richerson (1988) concluded that heavy reliance on social
learning is most adaptive if individual learning is inaccurate (or
costly to make accurate). Further, when the environment does not
change too quickly, and there is not too much migration among
habitats, the “occasional use of independently acquired compelling
evidence coupled with faithful copying in the absence of such
evidence is sufficient to keep the locally adaptive behaviour
common” (Boyd and Richerson, 1988, page 43). Rogers (1988)
developed a somewhat similar model, but assumed that an
individual either learns individually or socially, with individual
learning occurring without error. He concluded that the popula-
tion is expected to reach an equilibrium at which individual and
social learners will be equal in their fitness. Rendell et al. (2010)
however showed that by adding a spatial structure to this problem
the mixed equilibrium may not occur.

Feldman et al. (1996) generalised those models by allowing for
genetic evolution through the use of a gene-culture coevolutionary
model, where the decision to learn individually or socially is
determined by a fixed genotype-dependent probability. They found
that both fixation of individual learning and the stable coexistence of
individual and social learning are possible in changing environments.
Like Boyd and Richerson (Boyd and Richerson, 1988), they concluded
that the greater the probability of environmental change the more
difficult is it for social learning to evolve (see also (Aoki et al., 2005;
Wakano et al., 2004)). Aoki and Nakahashi, (2008) analysed the
evolution of social learning in spatial heterogeneous environments
under different migration rates. They found that increased migration
hinders social learning and pointed to the importance of population
structure on the evolution of social learning. In contrast, the simula-
tion approach of the ‘social learning strategies tournament' suggested
that social learning could be more effective than asocial learning
even when environments change rapidly (Rendell et al., 2010, 2011).
These differences relate, in part, to whether multiple traits are
considered (as in the tournament), which allows social learners to
adjust their behaviour flexibly following environmental change,
switching between the variants in their repertoire to maintain
adaptive behaviour.

There is further ambiguity over the most effective means of
social learning-that is, which ‘social learning strategy’ (or ‘trans-
mission bias’) to deploy-under variable environmental conditions.
Henrich and Boyd (1998) studied the evolution of conformity, a
frequency-dependent transmission bias promoting the dispropor-
tional adoption of common behaviour. They developed a two-locus
haploid asexual model where one locus determines the reliance on
social learning as opposed to individual learning and the second
locus determine the strength of the conformist effect. Their model
suggested that selection favours conformist transmission as long
as the environment does not change too rapidly and the evolution
of social learning is more strongly influenced by environmental
heterogeneity than the evolution of conformity. They also found
that increased migration impeded social learning but has little
effect on the evolution of conformity.

Nakahashi (2007), Wakano and Aoki (2007) and Kendal et al.
(2009) all challenged aspects of Henrich and Boyd's findings, by
reporting a negative relationship between the stability of the
environment and the reliance on conformist bias. The reliance
on conformity tends to be larger when the cycle of environmental
change is shorter (i.e. for rapid change). The Henrich and Boyd
model differs from these other models (Kendal et al., 2009;
Nakahashi, 2007; Wakano and Aoki, 2007) in a number of
respects, including the manner in which individuals use asocial
and social information. While Henrich and Boyd (1998) assume
mixed strategies, Nakahashi (2007), Wakano and Aoki (2007)
and Kendal et al. (2009) all assume pure strategies where
individuals use either social or individual learning to update their
behaviour. Eriksson et al. (2007) criticised Henrich and Boyd's
assumptions, arguing that it is unrealistic to assume that indivi-
duals know all variants at any time or that only two cultural
variants exist in the population. On the base of their model,
Eriksson et al. (2007) concluded that a relaxation of either of
these assumptions is disadvantageous to the evolution of a
conformist strategy. Efferson et al. (2008) found that the evolu-
tionary advantage of conformity depends on the accuracy of
individual learning.

However, McElreath et al. (2011) claim that neglecting spatial
heterogeneity, as it occurs in the models of Nakahashi (2007),
Wakano and Aoki (2007), Kendal et al. (2009) and Eriksson et al.
(2007), may diminish the effectiveness of conformity. This sugges-
tion is plausible, since spatial variation promotes reliance on
conformity (Boyd and Richerson, 1985). Similarly, Nakahashi
et al. (2012) argue that focusing on situations with (i) only two
cultural variants present, (ii) temporally varying environments and
(iii) error-free cultural transmission has obscured conditions
favouring the evolution of conformity.

In summary, efforts to explore the relationship between envir-
onmental uncertainty and learning strategies have mainly focused
on analysing evolutionary stable equilibria and it is understood
that populations exposed to changing environments are expected
frequently to show a mixture of individual and social learning
strategies. However, it remains unclear to what extent, and in
what conditions, reliance on social learning is adaptive, and how
effective conformist transmission is in those environments. The
focus on evolutionary stable strategies allows for an elegant
investigation of the long-term outcomes of evolution through
natural selection. In many real-world situations however, learning
strategies cannot be observed directly and therefore predictions of
the models reviewed above are difficult to verify with
available data.

In this paper we want to contribute to the debate by developing
a framework that potentially can link data and theoretical hypoth-
eses about the importance of different learning strategies in
different environmental settings. Alternative learning strategies
differentially impact the usage, or occurrence, frequencies of the
present variants of a cultural trait, and these frequencies can be
observed relatively easily. Therefore the analysis of temporal and
spatial patterning of those usage and occurrence frequencies
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Fig. 1. (a) Example of an adaptation function ai, (b) Considered spatial hetero-
geneous environment.
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might provide an alternative way of investigating which learning
strategies are employed by a population.

We explore this approach by developing a mathematical
model, which tracks the spatial and temporal frequency distribu-
tions of different cultural variants in different environmental and
cultural conditions. We base our model on the assumption that
frequency changes of cultural variants are mainly attributed to
individual and social learning strategies and therefore establish a
causal relationship between changes in frequency and learning
strategies employed by the population. Further, we assume that
the considered cultural variants confer different levels of benefit in
different environmental settings (as expressed by the variant's
‘adaptation functions’) and that the strength with which learning
strategies favour one variant over another is dependent on the
conferred benefit. This framework enables us to explore the effects
of different learning strategies on the frequency distribution of
cultural variants over time and space in changing environments
and consequently to quantify the adaptation level of the popula-
tion with respect to the considered cultural trait. In this way we
can infer which learning strategies should be expected in popula-
tions showing low and high levels of adaptation, respectively and
can explore which learning strategy leads to the highest adapta-
tion level of the population, hence fitness, given a certain level of
environmental uncertainty. Our interpretations assume that suffi-
cient time has passed for the optimum to be reached and that
selection will typically favour traits that maximise average fitness
(Maynard Smith, 1978). Additionally the framework allows us to
investigate the effects of individual and social learning on cultural
diversity. Here, we build on our earlier analyses (Kandler and
Laland, 2009), which explored the relationship between the rate of
innovation and level of cultural diversity in homogeneous
environments.

In contrast to previous research, our approach assumes tem-
porally fixed learning strategies and consequently we cannot draw
any conclusion about the evolutionary stability of strategies
leading to high levels of adaptation as natural selection does not
always favour strategies maximising average adaptation levels
(e.g. (Haldane, 1932; Huxley, 1938)). In constant environments it
has been shown (e.g. (Cronk, 1999; Lande, 1976)) that, subject to
consistent selection, evolutionary stable strategies maximise the
adaptation level of well-mixed populations, but under frequency-
dependent selection stable equilibria usually result in adaptation
levels lower than the maximum. Therefore subsequent analyses to
those presented here will be required to establish whether the
identified strategies leading to the highest average adaptation
level are evolutionary stable. However, the strategies which
maximise average fitness often provide a good first indication
what is likely to develop especially when the considered system
exhibits some stochasticity. Further, using the strategies identified
by previous research as model input will allows us to analyse the
expected frequency changes of different cultural variants under
those strategies and consequently to compare these change
pattern to available data.

So far most modelling efforts focused on understanding the
properties of populations which are optimal in some sense (either
maximised individual or average fitness) and therefore assumed
that sufficient time has passed so that the optimum could be
reached and that individual or average fitness (with respect to the
considered trait) are the quantities maximised by evolution
(Maynard Smith, 1978). Here we suggest that our approach might
enable researchers to ‘reverse engineer’ conclusions about the
learning rules deployed in current or past populations, given
knowledge of how cultural variation and diversity has changed
over space and time, independent of any optimality assumption. In
Section 4 we demonstrate how statistical techniques, such as
Approximate Bayesian Computation, can be used to infer
information about learning strategies from usage or occurrence
frequencies of different variants of a cultural trait.
2. The model

The central element of our model is a cultural trait, which is
represented by different variants serving a similar function
but differing in the benefit conferred in different environme-
ntal conditions. The variants are adopted by individuals of a
single population, distributed across a two-dimensional domain
D¼[0,1]� [0,1]. Individuals choose between alternative variants
according to the adoption mechanisms specified below. The
population experiences temporally and spatially changing envir-
onment conditions, expressed by the function e(t,x), t∈½0; tmax�, x∈D
with eðt; xÞ∈½−1;1�. Changing environmental conditions affect the
adaptation levels of the different cultural variants and we char-
acterise each variant i by its ‘adaptation function’, or ai(e(t,x)). The
adaptation function quantifies the fitness level that variant i
conveys to its adopter in environmental state e(t,x). Fitness levels
vary in the interval [0,1] with 0 indicating no fitness and 1 describ-
ing the situation of optimal adaptation. Fig. 1 gives an example of
such an adaptation function; ai(e) is zero if the use of variant i
provides no advantage to the adopter in environment e and has a
positive value otherwise. We assume ai to be a bell-shaped
function, which possesses its maximum value amax,i, where in
our analyses 0.2≤amax,i ≤1, at the environmental state mi to which
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the variant is best adapted. The width of the function ai is
determined by the parameter si, where in our simulations
0osi≤0.06, which can be interpreted as a measure of the general-
ity of the specific variant (The larger si the larger is the environ-
mental range over which the variant provides a benefit to its
adopters).1 Hence each cultural variant is determined by the
parameter set (mi, si, amax,i). We begin each simulation run by
generating a pool of 15 variants, choosing their parameters mi, si
and amax,i randomly within the assumed ranges. We restrict
ourselves to 15 variants in order to make the computational effort
manageable, however test runs with more than 15 variants
showed that the results do not change qualitatively.

The randomly chosen variants are introduced into the popula-
tion at random locations (although variants are only introduced
into areas where they provide some sort of benefit at the time of
invention, meaning where ai(e(0,x))40.05 holds). Given our
assumption that all cultural variants fulfil a similar function, they
can be considered as competing with each other for use. This
competition is manifested in the manner in which the population
adopts the different variants. We distinguish between two main
adoption mechanisms, (i) social learning, in the form of both
directly biased transmission and frequency-dependent transmis-
sion and (ii) individual (or asocial) learning. We note, that in
reality, human social learning strategies are likely to be more
complex than those considered here (e.g. (Morgan et al., 2012;
Rendell et al., 2011)).

Individual and social learning differ in the kind of information
used to form the adoption decision. Here individual learning is
based on judgments about the utility of specific variants in
observed environmental conditions. This process has two main
error sources: misjudgement of the current environmental condi-
tion e and misjudgement of the adaptation level conferred by the
different variants. Although these error sources are conceptually
different, they lead to the same outcome in our modelling frame-
work: a variant i is chosen for which mi≠e. Therefore we model the
inaccuracy of individual learning by assuming that individual
learning is based on an environment eðt; ⋅Þ ¼ eðt; ⋅Þ þ ω with
ω∼Nð0; s2errorÞ , where the variance s2error models the reliability of
individual learning. Unless otherwise indicated, we assume
s2error ¼ 0:02. Despite being error-prone, individual learning can
introduce new variants in a specific area of the domain.

In contrast, social learning can act only on variants that already
exist in a specific area, leaving social transmission frequency-
dependent. In the following we explore the dynamics of two
specific social learning mechanisms, directly biased transmission
and frequency-dependent transmission, deploying the formulation
of Henrich (2001). Further, we assume that the transmission
processes occur accurately. Directly biased transmission is defined
as the selective copying of pre-existing variants found to be
efficacious by individual assessment (Boyd and Richerson, 1985)
and is characterised by a positive correlation between the adapta-
tion level of the variant and the strength of social learning. (This
rule is sometimes referred to as ‘payoff-based copying’ (Kendal
et al., 2009; Laland, 2004; Morgan et al., 2012; Rendell et al.,
2011)). Using this strategy, the naive members of the population
(individuals who have not yet adopted a cultural variant) would
adopt variant i at a rate ri¼ri(ai) with ai¼ai(e(t,x)), where in our
simulations 0≤ri≤0.15. This rate ri can be interpreted as the mean
judgment, across the population, of the benefit this variant might
convey, and we assume that the higher the adaptation level ai(e(t,
x)), the higher the adoption rate ri. Further, individuals who
1 We assume the parameters amax,i and si are correlated in order to account for
the fact that more general applicable variants may not provide such high maximum
adaptation levels than more specialized variants.
already possess a variant might consider switching to another
variant if it provides a greater benefit. We define the rate at which
individuals who have adopted variant i switch to variant j as
cij=cij(ai(e(t,x)),aj(e(t,x))), where in our analyses 0≤cij≤0.08. We
assume that the rate cij depends on the difference in the adapta-
tion levels of the variants: the higher the difference aj(e(t,x))-ai(e(t,
x)) the more likely individuals are to switch.

Frequency-dependent transmission neglects fitness informa-
tion and leads to a disproportional adoption of variants whose
frequencies fall above or below a commonness threshold cB (Boyd
and Richerson, 1985). Here, this frequency-dependent bias is
modelled by (1−b)ri+b(ui−cbK(t)) and [(1−b)cij+b(uj−cbK(t))]+

where ui and uj describe the frequencies of variants i and j, K
stands for the population size at time t and the coefficient b
determines the strength of the frequency-dependent bias by
quantifying the respective importance of fitness and frequency
information on the adoption decision. For b40 we obtain a
conformist transmission bias: the more a variant's frequency
exceeds the threshold cb the stronger the variant is supported by
the bias.

All cultural adoption rules specified above act locally in location x.
However, spatial interactions are ensured by the dispersal behaviour
of the population, with individuals carrying variants into new
locations. Spatial dispersal is defined by the diffusion components
diΔui which describes the spread of the variants based on a random
walk assumption. The scale of spatial interactions within the popula-
tion is given by the diffusivity di.2 Unless otherwise specified, in our
analyses di¼d¼10−4. The diffusion approach implies that the direc-
tion of dispersal is uncorrelated with the locations of the environ-
mental conditions in which the variants, carried by the individuals,
are beneficial.

In order to model temporal and spatial environmental changes
we define a parameter ε (denoted as environmental instability),
which describes the fraction of the environment that is changed in
every time step. We discretise the two-dimensional domain D into
a lattice {lrs}r,s¼1,…,m where 1/m describes the discretisation length
in both spatial directions and add to ε per cent of the lattice points
a random variable τ∼Nð0; s2changeÞ. Unless otherwise indicated we
set s2change ¼ 0:075. In order to avoid changes that occur suddenly
in time and space, we smooth the environment in temporal and
spatial direction and obtain a continuous differentiable two-
dimensional surface e(t,x), t≥0; x∈D. Our model of environmental
change allows for the recurrence of conditions especially as
we restrict the range of possible environmental conditions to
E¼[−1,1].

With ξ and η¼1-ξ describing the fractions of the population
relying on individual and social learning, respectively we formu-
late the described dynamics in a spatial and temporal explicit
n-variant diffusion-reaction competition framework that models
the changes of the variant's frequencies ui over time and space. We
solve the system of differential equation using the Finite-Element
Method (FEM) (e.g. Zienkiewicz and Taylor (1991)). This method is
a numerical technique for finding approximate solutions to sys-
tems of partial differential equations where the geometrical
domain of the considered problem is discretised using sub-
domain elements, called the finite elements, and the differential
equations are applied to a single element after they are trans-
formed to an integro-differential formulation. Based on such FEM
solutions ui(t,x), which describe the spatial frequency distribution
of variant i at time t, and the level of adaptation ai(e(t,x)) of the
different variants, we are able to determine the level of adaptation
2 Diffusivity is measured in the dimension [length]2/[time] and is indicative of
the speed of diffusion. For example the expression

ffiffiffiffiffiffiffiffi

4dt
p

can be interpreted as the
average distance covered in the time interval [0,t]. The value d¼10−4 is chosen so
that spatial interactions contribute to but not dominate the cultural dynamic.



Table 1
Population adaptation levels, population diversity indices for different levels of conformity and dispersal rates.

Level of
conformity

Population adaptation level Population diversity level

Low dispersal
(d¼10−5)

Medium dispersal
(d¼10−4)

High dispersal
(d¼10−3)

Low dispersal
(d¼10−5)

Medium dispersal
(d¼10−4)

High dispersal
(d¼10−3)

b¼0 0.4908 0.4808 0.4194 0.6685 0.7027 0.7668
b¼0.1 0.5276 0.5068 0.4436 0.6250 0.6416 0.7243
b¼0.2 0.5526 0.5284 0.4760 0.5953 0.6171 0.6808
b¼0.3 0.5708 0.5414 0.5052 0.5720 0.5983 0.6515
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of the population to the experienced environmental conditions at
every time t and location x

apopðt; xÞ ¼ ∑
n

i ¼ 1
aiðeðt; xÞÞuiðt; xÞ

and the overall level of adaptation

apopðtÞ ¼
1
m2 ∑

m

r;s ¼ 1
∑
n

i ¼ 1
aiðeðt; lrsÞÞuiðt; lrsÞ;

where n describes the number of variants present in the popula-
tion. For convenience we average over the adaptation level at the
grid points of the lattice {lrs}r,s¼1,…,m, which discretizes the
considered domain D. Based on these variables we quantify the
effects of different fractions of the population relying on individual
and social learning on the adaptation situation under different
levels of environmental instability. All results described below are
obtained by averaging over 10,000 solutions of the diffusion-
reaction framework. We stress that our approach does not deal
with the consequences of the adoption decisions of a single
individual, but rather with the cumulative consequences of the
decisions of all individuals in the population on the frequencies of
the different cultural variants. A full description of the mathema-
tical model can be found in Appendix.
3. Results

In this section we use the model to explore the relationship
between environmental uncertainty, different learning strategies
and the population's level of adaptation and cultural diversity. We
start by analysing the adoption dynamics of a population in a
spatially heterogeneous but temporally constant environment as
shown in Fig. 1b. (Here we do not include individual learning but
note that this does not change the adaptation dynamic qualita-
tively). We then go on to analyse the adoption dynamic in spatially
and temporally heterogeneous environments.

3.1. Spatial heterogeneous environments

As described above, the 15 randomly chosen variants are
introduced into the population at random locations (although
variants are only introduced into areas where they provide some
sort of benefit, where ai(e(0,x))40.05 holds); the dispersal beha-
viour of the population is responsible for their subsequent diffu-
sion over the considered domain D. Naturally, we find that the
areas where variants prove to be well-adapted are larger in
regions with relatively little spatial variability, causing those
variants to be present at high frequencies over larger regions. In
contrast in more spatially variable environments, beneficial var-
iants only raise the adaptation level of a smaller region. Further-
more, we find that the presence of a conformist bias typically leads
to higher level of adaptation over time, with a sharper spatial
distinction between the variants. In temporally constant
environments, highly beneficial variants are likely to show high
frequencies, which then are reinforced by the frequency-
dependent bias.

Dispersal facilitates the spatial spread of the different variants and
therefore enhances the fitness of the population in the short term.
However, as soon as variants became present in areas where they are
well-adapted, dispersal can have the opposite effect: it can bring
variants into areas where they might not be the best response to the
environmental conditions while, depending on the difference between
the levels of adaptation of variants, the switching process might not
happen immediately. Table 1 gives the overall adaptation level apop of
the population after 500 time steps, for different dispersal rates and
different levels of conformity.

We also observe a positive relationship between the level of
conformity necessary to maximise adaptation levels and the rate
of dispersal: the higher the dispersal rates the higher the level of
conformity needs to be in order to reach the higher adaptation
level apop (Boyd and Richerson, 1985). Conformity counteracts the
effects of dispersal by accelerating the switching process. How-
ever, we stress that for conformity to increase fitness, the strength
of conformity (i.e. magnitude of b) cannot increase unboundedly,
because it may inhibit the spatial diffusion of the variants. Further,
we note that the utility of conformity is time-dependent. The
longer we allow the system to evolve the higher is the benefit of
the conformist strategy.

Next we quantify the level of cultural diversity by calculating
the average Shannon diversity index of the population defined by

SðtÞ ¼ −
1
m2 ∑

m

r;s ¼ 1
∑
n

i ¼ 1
uiðt; lrsÞlnðuiðt; lrsÞÞ;

where n describes the number of variants present. For conveni-
ence we average over diversity levels at the grid points of the
lattice {lrs}r,s¼1,…,m which discretizes the considered domain D.
Table 1 shows the level of cultural diversity, for the situations with
and without conformity. The diversity-reducing property of con-
formist bias is apparent. The higher the value of b (the strength of
the conformist bias) the lower is cultural diversity. As expected,
dispersal increases diversity.
3.2. Spatially and temporally heterogeneous environments

We now allow for both spatial and temporal changes in
environmental conditions. As described above, it is a widely held
view that, in temporally changing environments, social learning
alone is not able to ensure an efficient and successful adaptation
process to changed environmental conditions, since effective
adaptation often requires a source of new variants (unless copy
error introduces variation (Rendell et al., 2010)). We find that a
small amount of individual learning can fulfil this role and start
our analysis by exploring the relationship between environmental
instability ε (with ε describing the fraction of the environment that
is changed in every time step), the population's reliance on
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Fig. 2. Left column: Overall adaptation level apop of the population after 500 time steps for different fractions of the population relying on individual learning ((a): ξ¼0.05,
(b): ξ¼0.1, (c): ξ¼0.3), levels of environmental instability (ε¼0.05,0.15,0.25,0.4) and strengths of conformity (b¼0,0.1,0.2,0.3). Right column: Shannon diversity index of the
population after 500 time steps for different fractions of the population relying on individual learning ((d): ξ¼0.05, (e): ξ¼0.1, (f): ξ¼0.3). All simulations start with the same
environmental state.
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individual learning ξ and conformity b. Fig. 2a–c show the overall
adaptation level apop of the population after 500 time steps, for
different values of ε, ξ and b ((a): ξ¼0.05, (b): ξ¼0.1, (c): ξ¼0.3).

Individual learning can introduce new variants into a region and
therefore can lead to a more successful adaptation process in
temporally changing environmental conditions (Fig. 2a–c, across the
parameter range illustrated, an increase of the fraction of the popula-
tion relying on individual learning leads to an increase in the overall
adaptation level apop). However, this relationship does not hold
unboundedly. Due to the assumed error-prone nature of individual
learning there exist a maximal value of ξ that can lead to the highest
adaptation level of the population, for given values of ε and b.
Interestingly, even though social learning is often thought to be
ineffective in unstable environments as variants present in the last
time step might have no utility in the now changed environments (e.g.
(Feldman et al., 1996; Henrich and Boyd, 1998; Richerson and Boyd,
2005)) Fig. 3b shows that the highest adaptation levels are reached
with fractions of cultural social learning η never below 55%. Popula-
tions that show those high levels of adaptation in frequently changing
environments are characterised by high levels of cultural diversity
which are caused by high average numbers of present variants
covering a broad range of possible conditions (Fig. 4). Consequently,
social learning does not necessarily convey outdated information in
changing environments if we allow for the accumulation of variants
and therefore for cultural diversity in the population (a conclusion
consistent with (Rendell et al., 2011)). In this sense individual learning
provides a set of variants fromwhich social learning can choose. In the
following we explore in detail how the adaptation process is affected
by the different social learning strategies, cultural diversity, spatial
dispersal, and the accuracy of individual learning.
3.2.1. Effects of conformity
The effect of conformity on the overall adaptation level apop

depends crucially on environmental instability and the fraction of
the population relying on individual learning. Fig. 3a shows that
(for given values of ε) there exist a pair of parameter values
(bmax, ξmax) leading to the highest level of adaptation of the
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Fig. 3. (a) Fractions of individual learning ξ and levels of conformity b and
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population. The more variable the environment the higher the
fraction of individual learning and the strength of conformity need
to be in order to maximise adaptation levels (Kendal et al., 2009;
Nakahashi, 2007; Wakano and Aoki, 2007). Another way of
thinking about this is to suggest that in less variable environments
there is only a certain level of conformity that can be maintained,
such that we witness a negative relationship between the strength
of conformity and the proportion of the population learning
socially, and hence deploying the conformist bias (Fig. 3b). This
fact results from the opposing effects of conformity and individual
learning on low-frequent variants. While individual learning
introduces new variants usually at low frequencies into a region,
conformist bias suppresses the spread of those variants. Now if the
fraction of individual learning in the population is low then new
variants are introduced only at very low frequencies and a
medium or strong conformist bias can prevent those variants from
spreading, even when they are well-adapted to the current
environment. This hindrance slows down or even prevents the
adaptation process and results in a lower overall adaptation level
of the population. Therefore, in populations where only a small
fraction of individuals rely on individual learning and which
experience unstable environments, we expect at most very low
levels of conformity (i.e. small b). However, if the fraction of
individual learning becomes larger (and consequently variants are
introduced at higher frequencies) the levels of conformity can be
higher before the spread of new well-adapted variants is pre-
vented (i.e. high b possible). The higher levels of conformity then
lead to a stronger transmission of those variants when their
frequencies exceeded the threshold cb. In this context it becomes
clear that the advantage of a conformist strategy depends crucially
on the accuracy of individual learning (Efferson et al., 2008). If
individual learning is more error-prone (meaning an on average
higher misjudgement of the current environmental conditions)
then adaptive variants are introduced at lower frequencies, which
in turn undermines social learning. Furthermore, due to the error-
prone nature of individual learning we observe that in relatively
constant environments only a small fraction of individual learning
will lead to the highest adaptation values of the population in the
long term as individual learning will introduce both beneficial and
non-beneficial variants into the population.

In summary, in variable environments the population's adapta-
tion level is maximised by a balanced combination of individual
learning and conformity. Fig. 3a shows that in order to make
conformity a beneficial strategy in temporarily changing environ-
ments either a high fraction of the population needs to rely on
individual learning, or the conformist bias present in the popula-
tion needs to be comparatively weak.
3.2.2. Effects of cultural diversity
We have already seen that cultural diversity plays a crucial role in

the adaptation process and Fig. 2d–f explores how environmental
instability ε, the population's reliance on individual learning ξ and
conformity b affect the level of diversity (as expressed by the Shannon
index). We see that greater environmental variability is associated
with greater cultural diversity. Again we observe opposing effects of
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individual learning and conformity, with individual learning increasing
diversity and conformity reducing it (cf. Fig. 2d–f). For the parameter
constellation ε¼0.4 and b¼0.3 we see most clearly that both,
adaptation and diversity levels are raised with increasing fraction of
individual learning.

Each (b,ξ)-tupel, which maximises the adaptation level of the
population for a given ε, results in a characteristic range of cultural
diversity, although those ranges will differ greatly with different
assumptions about environmental instability. In stable environ-
ments much less diversity is needed for the population to be well
adapted compared to highly variable environments. Generally, we
expect that the higher the environmental instability the higher
will be the level of cultural diversity necessary for the population
to be well-adapted. Fig. 4 shows the average number of cultural
variants present in the population after 500 time steps for
different fractions of individual learning ξ, and different levels of
environmental instability ε, with or without conformity b ((a):
b¼0, (b): b¼0.3). We observe a similar pattern for cultural
diversity, with environmental variation promoting cultural varia-
tion. While the presence of a conformist bias reduces the average
number of variants, individual learning increases it. We conclude
that greater rates of environmental variability can be tackled by
maintaining a higher number of cultural variants, which ensures
that the population can respond adequately to a broad range of
environmental conditions (Rendell et al., 2010).

Changes in environmental conditions may turn hitherto adap-
tive variants into variants with no functional utility (meaning
ai(e(t,x))¼0) (and vice-versa). Table 2 shows the average number
of those variants without utility in the population for the para-
meter set ε¼0.4, b¼0.3, for which an increase of the fraction of
individual learning greatly improves the level of adaptation.
Interestingly, while witnessing an increase in the adaptation level
we simultaneously observe an increase in the number of non-
beneficial variants. In other words, we obtain higher level of
adaptations with increasing individual learning even though the
number of non-beneficial variants is higher. This suggests that in
frequently changing environments, variants with no (or low)
utility, if preserved, may play a role in the adaptation process by
providing a reservoir of variation through which the population
can adjust to new conditions (as reported in (Rendell et al., 2011)).
If the environment is very unstable, variants conveying no benefit
at this particular moment might become adaptive soon and can
therefore accelerate the adaptation process, by conferring adaptive
plasticity (Rendell et al., 2011).
Table 2
Average number of maladaptive variants in the population exposed to a changing
environment.

ξ¼0.05 ξ¼0.1 ξ¼0.2 ξ¼0.3

ε¼0.4, b¼0.3 0.37 0.56 0.83 1.25
We explored the characteristics of the variants that were most
frequent in different spatial locations and concluded that the
larger the width si of the adaptation range of variant i the more
likely it is that this variant will be found in different locations x.
Temporal instability in the environment favours the transmission
of variants which are adapted to a broader range of environmental
conditions, which can be seen as a generalist solution to the
problem.

In summary, our analysis reveals that the more fluctuating the
environment, the more advantageous is the accumulation of
variants with different adaptation functions ai. This also means
the more that the environment fluctuates, the greater the number
of cultural variants is expected to be present at the same time.
3.2.3. Effects of dispersal
Dispersal of the population is modelled as a diffusion process

and therefore its direction is uncorrelated with the locations of the
regions where the specific variants are beneficial. Consequently
variants are carried into areas where they may or may not raise
the adaptation level. We have seen in section 3.1 that in spatially
variable but temporal constant environments dispersal did not
lead to higher adaptation levels in the long run. If we add temporal
variability then dispersal has a positive effect on the population's
level of adaptation for a very small fraction of individual learning.
Even though dispersal is undirected, it increases cultural diversity
and can introduce new and well-adapted variants into certain
spatial locations. Therefore it is able to facilitate the adaptation
process in temporally changing environments. However, with
fractions of individual learning high enough to support the
adaptation process, increasing dispersal rates result in reduced
population levels of adaptation as variants are carried into areas
where they might not be beneficial. Further, an increase of the
dispersal rate lead to an increased strength of conformist bias in
order to achieve the highest levels of adaptation in the population.
In sum, the process of individual learning is far better suited than
dispersal for ensuring an efficient adaptation process in temporally
varying environments.

3.2.4. Effects of accuracy of individual learning
The accuracy of individual learning plays a crucial role in the

evolution of conformity in temporally changing environments
(Efferson et al., 2008). Naturally, more accurate individual learning
will raise the adaptation level of the population. As the accuracy of
individual learning increases, the adoption probability of a bene-
ficial variant via individual learning increases, while the adoption
probability of a less beneficial variant decreases. Now social
learning acts on a set of variants that are better adapted to the
experienced environmental conditions, which particularly benefits
conformity. Due to the increased adoption probability of beneficial
variants, individual learning is able to introduce those variants at
higher frequencies. Following the line of argument developed in
Section 3.2, with more accurate individual learning the level of
conformity can be higher before it acts to reduce the adaptation
level by hindering or preventing well-adapted but low-frequency
variants from spreading.
4. Applications of the approach

Our model describes the temporal and spatial variation in the
frequencies of different cultural variants caused by the varying
adoption decisions of individuals in the population. Besides
revealing theoretical insights into the importance of different
transmission mechanisms in changing environments we now
consider whether it is possible to use this approach to obtain
information about the adoption behaviour of populations from
observed frequency data. As we outlined earlier, the frequency-
based nature of our model was in part motivated by the causal
relationship between adoption decisions and changes in fre-
quency. By assuming a model of how different adoption decisions
change frequencies, the analysis of those patterns of change might
reveal some characteristics of the adoption process.

Frequency data can be obtained for many real world scenarios,
although the temporal and/or spatial resolution may often be
sparse. In the following, we explore how our model can be applied
to frequency data and subsequently how it can be used to infer
information about, for instance, the proportions of individual and
social learning exhibited by the population, the level of confor-
mity, and the adaptation levels of different cultural variants. To do
this, we need to estimate the ranges of the model parameters
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determining the strength of those different processes, which result
in frequency change pattern that are consistent with the observed
variation. In general, this proves to be a difficult task especially for
sparse data, where there are a large number of parameters, or
where there is a complex likelihood surface for the model.
Approximate Bayesian Computation (ABC) offers an elegant and
efficient way around these problems. ABC has been developed to
infer posterior distributions about unknown parameters if the
likelihood function is either impossible or computationally prohi-
bitive to obtain (Marjoram et al., 2003). Those methods build on
the computational efficiency of modern simulation techniques by
replacing the calculation of the likelihood function with a compar-
ison between the observed and calculated data. Toni et al. (2009)
have established the applicability of ABC methods to estimate the
parameters of dynamical systems. In the following, we use a
sequential Monte Carlo algorithm to estimate the parameters used
in our model (see (Beaumont, 2010; Toni et al., 2009)). The idea is
to find the range of parameter constellations that are most likely to
have produced the observed frequency pattern under the assumed
model and a given tolerance level. Based on those ranges we can
draw conclusions about the adoption mechanisms used by the
population.

To demonstrate the applicability of this approach we aim to
recover the parameters from noisy data produced by the model
itself. We sample 10 data points of the frequencies of the cultural
variants over time and add Gaussian noise N(0,s2) (The standard
deviation s is assumed to be 20% of the data value). In this way we
have full control over the real parameter values and can compare
those to the estimated parameters. For sake of simplicity we
assume a spatial homogeneous environment which experiences
a shock at time t¼50. Two variants are present during the first
phase [0,50] and after the environmental change two further,
better adapted, variants are introduced (see Fig. 5 for the time
course of the frequencies).

We assumed that the parameter ri and cij depend explicitly on
the level of adaptation of the specific variant i. Therefore, instead
of estimating each parameter individually we only need to
estimate the adaptation level ai of each variant. We assume no
prior knowledge about the adoption situation and therefore
assume uniform priors for the adaptation levels ai, fraction of
individual learning ξ and the level of conformity b. Applying the
sequential Monte Carlo (SMC) method yields to the posterior
distributions of the relevant parameter for the time periods before
and after the environmental change. Fig. 6 shows the posterior
distributions of the level of adaptation ai, i¼1,…,4 of the four
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Fig. 5. Time course of the frequencies of the four considered cultural traits (solid
lines), and noisy data (squares), which are used as the input for the SMC method.
Environmental change happens at time t¼50.
cultural variants before (dark grey histograms) and after (light
grey histograms) the environmental shock.

Similarly, Fig. 7 shows the posterior distributions of (a) the fraction
ξ of the population relying on individual learning and (b) of the level of
conformity b before (dark grey histograms) and after (light grey
histograms) the environmental shock. The narrow widths of those
posterior distributions suggest that ABCmethods offer an efficient way
to find the parameter ranges which most likely have produced the
frequency data under the assumed model.

In summary, the application of ABC methods to observed data
generates posterior distributions of themodel parameters that indicate
the parameter ranges which produce frequency pattern within a
tolerance interval of the observed data. Importantly, the widths of
those posterior distributions reflect the link between the model's
sensitivity for parameter change and the extent to which an accurate
estimate of the parameter values can be inferred (Toni et al., 2009). As
already stated, the parameters determine the strength of different
learning strategies in the adoption process and therefore a very broad
posterior distribution would mean that not much information about
the process can be extracted from the data (given the considered
model). In contrast, a narrow distribution indicates that only a small
range of parameter values is able to produce the observed frequency
pattern. This correspondence between sensitivity and the ability to
draw inferences is crucial. This is especially the case for complex
models with a large number of parameters as ‘key’ model parameters
will be quickly identified and possess narrow posterior distributions.
Consequently the resulting posterior distributions allow us to evaluate
the importance of the considered cultural processes in the adoption
process.

We stress that we do not try to identify an unique adoption
behaviour of the population, but rather seek to illustrate the potential
of applying ABC methods to frequency data by quantifying credible
parameter ranges and therefore by excluding large parts of the
parameter space which are not consistent with the observed data.
This allows us, at the minimum, to infer (conditioned on the
considered model) whether observed patterns of variations are con-
sistent with high or low fraction of individual learning or whether the
population shows weak or high conformist tendencies.

Naturally the value of this inference framework depends on the
adequacy of the description of the temporal and spatial change
patterns of the variant frequencies and the quality of the observed
frequency data. Consequently a crucial element of our suggested
analysis is to establish that the developed model does indeed capture
the major processes responsible for the frequency change of the
different cultural variants. Given the large number of competing
models for the structure of the underlying processes, it would be
helpful to compare their performance in describing the observed
data. To do so the SMC algorithm can be extended into a model
selection framework (see (Toni et al., 2009)). This allows for the
discrimination among a set of candidate models {m1,…,mn} in a
formal Bayesian selection sense by calculating the probability pi with
which model mi describes the data3 (holding p1+…+pn¼1) and the
corresponding posteriori distributions of the model parameters. The
subsequent calculation of the Bayes factors gives an indication of the
support provided by the data in favour of one model over another
(Kass and Raftery, 1995). We note that frequently there might not be
a single best model; indeed, given the often sparse nature of the data
and the complexity of interactions, this is to be expected. However,
the described statistical inference framework can provide us with a
greatly narrowed set of models and corresponding parameter ranges
which are consistent with the observed data and therefore provides
researchers with valuable information about which models and
3 The SMC model selection algorithm automatically includes a penalty for
including too much model structure (Kass and Raftery, 1995).
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Fig. 6. Posterior distributions of the level of adaptation ai of the four cultural variants (variant 1 (a), variant 2 (b), variant 3 (c) variant 4 (d)). Dark grey histograms describes
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(after); a2¼0.45 (before), a2¼0.15 (after); a3¼0.35; a4¼0.45 are indicated by black vertical lines.
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parameter ranges could not have produced the data. Moreover, while
our analysis solely includes frequency information, other lines of
evidence can be applied to this reduced set of models to narrow it
down further.
5. Conclusion and discussions

We have developed a mathematical model to trace the changes
in frequencies of different variants of a cultural trait in the face of
individual and social learning of various forms, as well as dispersal,
in a spatially and temporally variable environment. Our approach
assumes that variants are differentially adapted to different
environmental conditions. Changes in frequencies are caused by
adoption decisions of the population, where the adoption prob-
ability of each variant is correlated to the benefit the variant
conveys in a particular environment. We had two objectives.
Firstly, we explored the relationship between individual and social
learning and the population's mean level of adaptation in changing
environments, with a particular focus on conformity and on the
role of cultural diversity in the process of adaptation. Secondly we
investigated whether our model could be combined with statis-
tical techniques such as Approximate Bayesian Computation to
infer information about learning strategies from usage or occur-
rence frequencies of different variants of a cultural trait.
Even though our model differs structurally from the gene-
culture coevolutionary models (e.g. (Boyd and Richerson, 1988;
Feldman et al., 1996)), reassuringly our approach is validated by
the confirmation of some basic and widely accepted results. For
instance, we found, in accordance with the existing literature, a
synergy effect between individual and social learning, such that in
temporally changing environments, a mixture of individual and
social learning leads to the highest level of adaptation. We can
conclude that the outcomes of evolution maximising individual
and average fitness, respectively are similar.

Social learning can only act on variants that already exist at a
given location which, in changing environmental conditions,
might not be sufficient to ensure well-adapted populations.
Individual learning is able to introduce new variants into certain
locations and, depending on their adaptation level to the current
environmental conditions, social learning will then act in favour
of, or against, those variants. We found that the more the
environment varies temporally the higher the fraction of the
population relying on individual learning needs to be in order to
reach the highest adaptation level. However, at the highest
adaptation levels the fraction of social learning in a population is
typically greater than 55% and does not fall below a lower bound
far away from zero. While on the surface these findings seemingly
conflict with those of the social learning strategies tournament
reported by (Rendell et al., 2010, 2011), which concluded that



0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fraction of individual learning  

R
el

at
iv

e 
fre

qu
en

cy
  

0.09 0.1 0.11 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fraction of individual learning  

0 0.005 0.01 0.015 0.02
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Level of conformity  

R
el

at
iv

e 
fre

qu
en

cy
  

0 0.005 0.01 0.015 0.02 0.025
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Level of conformity  

Fig. 7. Posterior distributions of (a) the fraction of the population relying on individual learning ξ and (b) the level of conformity b. Dark grey histograms describes the
situation before the environmental change t¼ [0,50] and light grey histograms after the environmental change t¼ (50,100]. ‘True’ parameter ξ¼0.1; b¼0 are indicated by
black horizontal lines and the y-axis, respectively.

A. Kandler, K.N. Laland / Journal of Theoretical Biology 332 (2013) 191–202 201
social learning alone could be favoured in changing environments
(Rendell et al., 2010), in fact they are broadly consistent. In Rendell
et al.'s model, copy error serves the same function as individual
learning in our approach and we deduce that it might not be so
important for the adaptation process which mechanism produces
variation but only that variation is produced.

Generally speaking, individual learning provides the set of
variants from which social learning can choose. The process of
individual learning considered here is based on the inference
between the experienced environmental conditions and the judg-
ments about the utility of specific variants in those conditions. As
this mapping is likely to be error-prone social learning can be seen
as a mechanism that, amongst others, straightens out the errors. It
is worth pointing out that even highly error-prone individual
learning (which can be seen as a random invention process)
initiates adaptation. The strength of social transmission of a
variant depends on judgements of its benefit (which is correlated
to the variant's adaptation level) and the variant's frequency.
Therefore social learning typically favours adaptive over non-
adaptive variants, and in this way can greatly increase the
population's mean level of adaptation.

In frequently changing environments, the highest adaptation level
of a population is obtained by a relatively high fraction of individual
learning combined with high strength of conformity. This is in
agreement with results obtained from analysing the properties of
evolutionary stable strategies (Kendal et al., 2009; Nakahashi, 2007;
Wakano and Aoki, 2007) and again the outcomes of evolution
maximising individual and average fitness, respectively are similar.
More generally, we witness a tradeoff between the strength of
conformist bias and the proportion of conformists in the population
necessary to maintain high levels of adaptation. This relationship is
caused by the opposing effects of conformity and individual learning
on low-frequent variants. While conformity hinders or even prevents
the spread of low-frequent variants individual learning has the
capacity to introduce new variants usually at low frequency, counter-
acting the diversity-reducing tendency of conformity. A weak con-
formity bias requires only a small fraction of individual learners to
counteract its negative effects, while a strong conformity bias requires
a larger fraction if adaptive variants are not to be suppressed. These
observations imply a limit on the amount of conformity that can be
maintained within a population, as represented by an upper bound to
the product of the proportion of conformists and the strength of the
conformity bias. These theoretical findings are consistent with recent
experimental evidence characterising humans as ‘conformists’ or
‘mavericks’ (i.e. individual learner) (Efferson et al., 2008) and revealing
considerable variation amongst individuals in their tendency to con-
form and use social information (Morgan et al., 2012).

Our study points to the crucial role cultural diversity, and
consequently the mechanisms creating diversity, play in an effec-
tive process of adaptation to changed environmental conditions.
Populations that show high levels of adaptation in frequently
changing environments are characterised by high levels of cultural
diversity (as, for example, expressed by a high average number of
present variants covering a broad range of possible conditions).
This finding suggest that maintaining a diverse portfolio of
solutions that offer different benefits in different environmental
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settings to a problem, even to the extent of keeping temporally
maladaptive variants in the portfolio, provides an efficient way to
adapt to frequently changing environments (see also (Rendell
et al., 2011). We also found that variants that are adapted to a
broader range of environmental conditions are found more fre-
quently in the portfolios of different spatial locations. Therefore
one should expect that generalist solutions to a problem are
favoured over specialist solutions in frequently changing
conditions.

Those findings tie in nicely with the argument brought forward
by Richerson and Boyd, (2000) that culture facilitates adaptation
to temporally changing environments, as, for instance, may result
from climatic variation. We add to this argument that not only
culture, but diverse culture encompassing a set of variants cover-
ing a broad enough range of environmental conditions, is needed
in order to ensure an efficient adaptation process.

Finally, we note that often researchers (e.g. archaeologists,
biological anthropologists, psychologists) are confronted with
situations where time series data is available detailing the usage
or occurrence of different cultural variants, and where they would
benefit from being able to infer something about the underlying
social processes that produced those frequencies. As our approach
links frequency change patterns of cultural variants with the
adoption decisions of the population it potentially informs such
inference. We envision that our model, in combination with the
described ABC methods, could shed some light into this problem.
The model parameters determine the strength of the different
adoption processes and therefore the resulting posterior distribu-
tions of those parameters allow us to draw conclusions about the
adoption mechanisms manifest in the population. However, espe-
cially with sparse data we do not claim the existence of a unique
relationship between observed frequency patterns and underlying
processes; to the contrary, we expect that different processes will
be consistent with the observed frequency patterns. Nonetheless,
we anticipate that our approach will be valuable in helping to
narrow down the range of possible processes that could have
produced those patterns, and thus will still be instructive in the
face of uncertainty.
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