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The learning of action sequences through social transmission
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Abstract Previous empirical work on animal social

learning has found that many species lack the ability to learn

entire action sequences solely through reliance on social

information. Conversely, acquiring action sequences

through asocial learning can be difficult due to the large

number of potential sequences arising from even a small

number of base actions. In spite of this, several studies report

that some primates use action sequences in the wild. We

investigate how social information can be integrated with

asocial learning to facilitate the learning of action se-

quences. We formalize this problem by examining how

learners using temporal difference learning, a widely ap-

plicable model of reinforcement learning, can combine so-

cial cues with their own experiences to acquire action

sequences. The learning problem is modeled as a Markov

decision process. The learning of nettle processing by

mountain gorillas serves as a focal example. Through

simulations, we find that the social facilitation of component

actions can combine with individual learning to facilitate the

acquisition of action sequences. Our analysis illustrates that

how even simple forms of social learning, combined with

asocial learning, generate substantially faster learning of

action sequences compared to asocial processes alone, and

that the benefits of social information increase with the

length of the action sequence and the number of base actions.
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Introduction

Social learning facilitates the transmission of behaviors

within animal and human populations. The ability to learn

a behavior socially may spare learners the time-consuming

process of asocial learning, but also helps individuals ac-

quire otherwise difficult to learn behaviors. The drawbacks

of asocial learning are particularly significant in the case of

action sequences: behaviors composed of a sequence of

base actions, many or all of which may be already con-

tained in the learner’s repertoire. The number of possible

action sequences grows supra-exponentially with the length

of the sequence, so that even for a small repertoire of

known base actions and relatively short sequences, the

space of all possible action sequences is vast. Despite this,

many animals in the wild are able to acquire novel action

sequences, which can improve their exploitation of the

environment.

Action sequences are found in the resource collection

techniques of a number of animals. One of the more

prominent accounts of learning action sequences is the

nettle preparation technique of mountain gorillas, which

allows these animals to exploit a food with a number of

physical and chemical defenses (Byrne and Byrne 1993).

Being able to process nettles (and other foods) con-

tributes to enabling these gorillas to thrive in a harsher

environment than their lowland kin while still main-

taining a comparatively resource-rich diet (Byrne 1999).

Partly because nearly every gorilla in the study popula-

tion uses the same food processing technique, and partly

because of the complexity of the action sequences de-

ployed, Byrne and Russon (1998) suggest that this be-

havior is learned socially. Due to the species’ endangered

classification, it is hard to test this hypothesis in the wild,

although some studies have examined the acquisition of
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nettle processing in captive gorillas (e.g., Tennie et al.

2008).

Action sequences, particularly involving the use of

tools, have been found in other species more amenable to

controlled study. Both chimpanzees (Boesch and Boesch

1982) and capuchin monkeys (Ottoni and Izar 2008) use

stone hammers to crack nuts. Chimpanzees also use stems

of grass and vines to fish for termites (Goodall 1964) and

may modify these stems for more efficient food gathering

(Sanz et al. 2009). Given the difficulty of learning these

action sequences asocially, and inter-group variation of

these techniques that is not readily explained by ecological

differences, researchers have posited that these behaviors

are, at least in part, acquired through social transmission

(Byrne and Russon 1998; Whiten et al. 1999; Byrne 2003;

Biro et al. 2003).

However, a number of experimental studies suggest that

the role that social transmission plays is limited in some of

these species (Hoppitt and Laland 2013). In particular,

while it appears that many primates are able to acquire

individual elements of a sequence through observational

learning, there is very little evidence that these primates are

able to acquire the entire sequence through observational

learning alone. Whiten (1998) found some evidence that

chimpanzees could learn how to use a sequence of actions

to open an artificial fruit through observational learning,

although even here it is not clear how much of the sequence

was learned through observation. For other primates, the

evidence suggests that action sequences are rarely, if ever,

acquired all at once (Hoppitt and Laland 2013). Nonethe-

less, elements of an action sequence (individual actions)

have been found to be transmitted in both captive (Stoinski

and Whiten 2003) and wild orangutans (Custance et al.

2001; Call and Tomasello 1995), capuchin monkeys

(Custance et al. 1999), and captive gorillas (Tennie et al.

2008), suggesting that the learning of action sequences by

primates is typically achieved piecemeal over a period of

time, through a combination of social and individual in-

formation. This begs the question: ‘‘How does limited so-

cial learning, coupled with asocial learning, enable the

transmission of action sequences?’’

To address this question, we extend a well-established

machine learning and decision-making framework, tem-

poral difference (TD) learning in Markov decision pro-

cesses, to analyze how learners might tackle the problem of

learning action sequences.

Markov decision processes

For many action sequences, the order in which the actions

are performed is important; often early actions in a se-

quence change the environment so that previously

ineffective actions become effective. Understanding how

individuals learn action sequences thus requires a model of

the environment that changes with a learner’s actions.

A Markov decision process (MDP) is a mathematical for-

malism used to represent how individuals interact with the

world. In an MDP, learners navigate a series of states

which represent possible configurations of the world. The

learner then moves between states by performing actions.

These actions change the state of the world and can reward

the learner with a payoff. This is a general setting that can

capture a wide range of decision problems, including the

learning of action sequences.

To give a concrete example of an MDP, consider the

problem of picking an apple from a tree. In the initial state

of the problem, the learner is at the base of the tree with the

apple out of reach above her. The learner considers three

actions: climb the tree, pull the branch down, and try to

grab the apple. The first two actions change the learner’s

state: climbing up the tree changes the learner’s location,

and pulling the branch down changes the apple’s location.

In the absence of the first two, the third action, trying to

grab the apple, does not change the learner’s state, but

rather returns her to the initial state, having now wasted

some time and energy trying to grab an out of reach apple.

However, after climbing the tree or pulling the branch

down, the third action, grabbing the apple, now results in a

reward, the apple.

The MDP framework makes explicit the nature of the

problem that the learner faces, the possible steps the learner

can go through to achieve (or fail to achieve) a goal, and

the primary reinforcement or reward that a learner receives

at each step of the process. Formally, an MDP is defined by

a set of states, S. For each state, s [ S, a learner has a set of

possible actions, a [ As. For each action, a, a transition

function, T, specifies (probabilistically) which state the

learner will find herself in next. Similarly, a reward func-

tion, R, specifies the reward (positive or negative) that the

learner receives for each action. Agents in an MDP perform

sequences of actions to try and maximize their rewards.

The traditional problem is to compute the optimal decision

rule for an agent, given complete knowledge of the struc-

ture and rewards of the MDP.

This problem becomes far more complicated and ap-

plicable to learned behavior when learners are initially

ignorant of the structure of the MDP. Learners are then

tasked with an exploration–exploitation tradeoff; the more

time a learner invests in discovering the structure of an

MDP, the less time she will have to exploit that MDP for

reward. Conversely, if a learner prematurely begins to fo-

cus on exploitation of her environment without first ex-

ploring it, she runs the risk of not discovering the most

efficient means of exploitation and losing out on substantial

reward. A number of multipurpose algorithms have been
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developed for asocial learning in MDPs (see Sutton and

Barto 1998). While many of these algorithms might require

complex cognitive machinery, TD learning has emerged as

a simple yet powerful model of reinforcement learning that

provides an effective means to explore and exploit MDPs.

Temporal difference learning

Temporal difference (TD) learning provides a model of

how animals build up associations between actions and

rewards. This problem becomes difficult when actions and

subsequent rewards are separated in space and time and

when the relationship between reward and action is con-

tingent upon intermediate actions. This frequently occurs

when an action provides no immediate reward, but serves

only to create opportunities to engage in other actions.

In the case of the apple tree example presented above,

the difficulty in learning stems from the fact that pulling

the branch down is not immediately rewarding, but changes

the world so that reaching for the apple is now rewarding.

In order to learn this sequence, learners must be able to

create an association between pulling the branch down and

the future reward this enables. In a TD learning framework,

learners do this by creating an intermediate association

between the state with the branch pulled down and a re-

ward, allowing this state to act as a secondary reinforcer.

TD learning has received broad empirical support both

at a behavioral level and at a neurological level (Seymour

et al. 2004; Sutton and Barto 1990; Glimcher 2011; Dayan

and Niv 2008). Additionally, despite being more than

20 years old, TD learning is still an integral part of state of

the art artificial intelligence research (e.g., Mnih et al.

2015). TD learning builds on associative learning models

like Rescorla–Wagner (1972) and Bush–Mosteller (1951)

learning, by considering a much finer temporal resolution;

unlike previous models, TD learning considers behaviors

on an action by action level, instead of a trial level. This

allows TD learning to explicitly model the acquisition of

secondary reinforcers, which is critical for understanding

how learners acquire an action sequence.

TD learning provides a theoretical grounding for the

experimental observation that arbitrary action sequences

are typically only acquired by animals with the use of a

training technique known as chaining, where sequences are

built up action by action, either starting with the final

component action and working backwards (backward

chaining), or starting with the initial action and working

forwards (forward chaining). Associative chaining was

observed as early as Thorndike’s 1898 PhD thesis

(Thorndike 1898) and has been most recently investigated

within the experimental paradigms of ‘‘simultaneous

chains’’ and ‘‘concurrent chains’’. The ‘‘simultaneous

chains’’ paradigm was developed to investigate the for-

mation of action sequences when only previous actions and

their resulting transformations of the learner’s perspective

provided cues for subsequent actions. Although this para-

digm was developed to test the limits of associative

chaining theory (see Terrace 2005), the results of these

experiments are consistent with TD learning. The ‘‘con-

current chains’’ paradigm was developed to investigate the

relative strength of secondary reinforcers, often taking into

account their temporal context (e.g., Berg and Grace 2006).

This paradigm has been used to test the predictions of delay

reduction theory (Fantino et al. 1993) and other theories

that, like TD learning, seek to model the effect of temporal

structure on instrumental learning (Grace 1994). However,

delay reduction theory and related theories are trial-level

models of learning and, unlike TD learning, do not make

within-trial, action-level predictions of sequence

acquisition.

Like Rescorla–Wagner learning, TD learning interprets

association strengths as predictions of future outcomes. In

TD learning, associations change on the basis of the mis-

match between the predicted future reward and the rewards

received. In the context of Markov decision processes,

learners are faced with a series of states, s, and actions,

a. In TD learning, learners predict the expected value of

actions, W(a), and the expected values of states, V(s). To

capture the effect of secondary reinforcers, TD learning

treats the expected value of an action, W(a), as the sum of

the immediate reward produced by the action, r, and the

expected value of the state the action brings the learner to

V(s). Moreover, the learner is able to refine these value

predictions based on the difference between prior expec-

tations and actual experience.

Specifically, if a learner was in state si, took action ai,

transitioned to state si?1, and received a reward r, we as-

sume that learners update their state prediction V(si) and

their action prediction W(ai) according to the following

rule,

Vnew sið Þ ¼ Vold sið Þ þ a r þ cV siþ1ð Þ�Vold sið Þð Þ ð1Þ
Wnew aið Þ ¼ Wold aið Þ þ b r þ cV siþ1ð Þ�Wold aið Þð Þ ð2Þ

The change in predicted values is based on the differ-

ence between the old predicted value, Vold(si), and the new

estimate of value based on recent experience, r ? cV(si?1).

This new estimate of value has two components, r which is

the immediate reward, i.e., the primary reinforcement, and

cV(si?1) which is the predicted future reward of being in

state si?1, i.e., the learned secondary reinforcement. The

parameter c determines how important the immediacy of

reward is to the learner. If c is close to zero, future rewards

are relatively unimportant compared to immediate rewards,

whereas if c is close to one, future rewards are almost as
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important as immediate rewards. The parameters a and b
determine how much the learner changes her predictions on

the basis of new experiences. If a and b are close to zero,

then the learner only slightly changes her predictions,

whereas if a and b are close to one, the learner completely

changes her predictions to match recent experiences.

Despite its apparent simplicity, this update rule allows

chains of associations to be built up over repeated trials.

These associations are formed by using the value of states

as secondary reinforcers, allowing actions that do not

provide an immediate reward to become associated with

future reward.

We can see this process at work in our apple example.

One solution is to pull the branch down and then reach for

the apple. If the learner is initially ignorant of the value of

each state, being in a state with the branch pulled down is

not associated with reward. This means that the first time

the learner pulls the branch down, this action will not be

associated with reward. After the learner grabs the apple,

both the value of grabbing the apple and the value of

having the branch pulled down are updated and become

associated with reward. This means that the next time the

learner pulls the branch down, they are placed in a state

which they now know to be rewarding, and so only then

associate pulling the branch down with reward.

As can be seen from this example, value associations

can only propagate back through an action sequence one

step at a time. This means that at a minimum, the number

of successful trials needed to propagate the value of ulti-

mate rewards of a sequence to initial choices is equal to the

length of that sequence. This is a consequence of only

updating value predictions about the immediately preced-

ing action and state after experiencing a reward and state

transition. However, it is also possible to update the value

of an additional preceding state and action. This is captured

in TD learning by updating not only the estimated values of

V(si) and W(ai), as in Eqs. 1 and 2, but also the estimated

values of V(si-1), and W(ai-1):

Vnew si�1ð Þ ¼ Vold si�1ð Þ þ a c Vnew sið Þ�Vold sið Þð Þ ð3Þ
Wnew ai�1ð Þ ¼ Wold ai�1ð Þ þ a c Wnew aið Þ�Wold aið Þð Þ ð4Þ

It is straightforward to update value estimates for an

arbitrary number of previous states and actions in this

manner. The number of preceding states and actions up-

dated determines how fast new experiences influence far

preceding actions. Those states and actions which are

eligible for updating based on the rewards at a given time

and in a given state are referred to as the ‘‘eligibility tra-

ce’’ in TD learning and is interpreted as a short-term

memory of what the learner has done. These eligibility

traces have received neurological and behavioral support in

operant learning contexts (Pan et al. 2005).

TD learning produces predictions of the value of states

and actions based on experiences, but does not prescribe

which actions a learner should perform. A simple method

to select an action, known as a greedy rule, is to choose the

action with the highest predicted value. However, if

learners implement a greedy rule, they may not explore the

MDP sufficiently and may miss a high-payoff solution.

Thus, a good decision rule needs to incorporate some de-

gree of exploration, balanced against the risk of wasting

time searching for better solutions when a good solution

has already been found. We used a softmax decision rule to

balance exploration and exploitation. This rule has proven

effective in engineering contexts (Sutton and Barto 1998)

and in predicting the choices of humans and animals

(Racey et al. 2011). In a softmax decision rule, the prob-

ability of choosing an action, a, is proportional to

exp(W(a)/s), where s parameterizes how exploratory the

learner is. The softmax decision rule becomes the greedy

rule as s goes to 0 and becomes random action selection as

s goes to infinity. Under this decision rule, only the relative

value, not the absolute value, associated with an action

determines its probability of being selected.

How a learner estimates the value of unknown states and

actions will also influence how exploratory she is. Pes-

simistic estimates discourage exploration, whereas opti-

mistic estimates encourage exploration (Sutton and Barto

1998). To enhance early exploration, when a learner has

never performed and action before, for the purposes of

choosing an action, the learner uses the mean estimated

value of performed actions as a proxy for the value of the

unperformed action.

TD learning, paired with a softmax decision rule, fully

specifies how a learner navigates an MDP. These rules

depend upon four parameters, a, b, c, and s. The ideal

parameterization for a learner depends on the specific MDP

the learner faces.

Social information in temporal difference learning

To the best of our knowledge, previous work on MDPs has

focused on asocial learning, with the exception of multi-

agent engineering contexts where agents share information

in biologically unfeasible ways (e.g., Tan 1993). However,

many animals are known to also use some form of social

information to make decisions (Laland and Galef 2009;

Zentall and Galef 1988; Heyes and Galef 1996; Hoppitt

and Laland 2013). There are many ways of incorporating

social information into a reinforcement learning paradigm

(see for example Heyes 1994). One of the basic findings of

social learning research is that seeing an action demon-

strated will make it more likely for an animal to perform

that action. Fierce debate has been waged about the
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underlying mechanisms responsible for this empirical ob-

servation (Heyes 1994; Hoppitt and Laland 2013). Here,

we ignore this debate and simply posit that learners are

more likely to perform demonstrated actions. Specifically,

we integrate social information into TD learning by as-

suming that when a learner would assign equal probability

to engaging in the actions available in a given state (e.g.,

when a learner arrives at a state for the first time) instead of

choosing between the actions randomly, they choose an

action with probability proportional to the number of

demonstrators who they have seen perform that action in

that state.

This is a simplified implementation of social informa-

tion use, but it provides a reasonable starting point for

incorporating the behavioral-level effects of social infor-

mation into TD learning. This use of social information is

consistent with a broad variety of social learning

mechanisms, ranging from local enhancement to motor

imitation. In practice, our model of social information use

likely underestimates the impact of social learning (ani-

mals, unlike these learners, use social information even

when knowledgeable about the environment), but it

nonetheless suffices to illustrate the value of social infor-

mation when learning action sequences. Other forms of

social information transfer, e.g., interactions with the par-

tially processed products of experienced conspecifics,

might also be investigated within an MDP and TD learning

framework, but we leave this for the discussion.

In this model, we assume that learners already know

how to perform all of the base actions and that they are able

to discriminate between all states and all actions. We also

assume that learners treat all actions independently, pre-

cluding generalization between similar actions in different

states. As presented in this model, the associations devel-

oped for one action have no impact on the associations

developed for any other action. This assumption is likely

unrealistic, but is sufficient to investigate the impact of

social information on sequence learning. How learners

parse their environment and their actions into functional

units is itself an area of intense study, known as the

‘‘parsing problem’’ (Byrne 2003; Heyes 2009; Brass and

Heyes 2005). The experimental work of Reid et al. (2001)

demonstrated how the presence of a non-instrumental cue

in the environment can shape the functional units of be-

havior with profound consequences on the effects of rein-

forcement. Thus, more realistic models of animal learning

will need to combine the problem of learning to perceive

the environment with learning which actions to choose.

Indeed, a current frontier in artificial intelligence research

concerns extending the TD learning paradigm to rich, high-

dimensional perceptual spaces (e.g., Mnih et al. 2015).

To demonstrate the applicability of this modeling

framework to learning problems that animals might face,

we next turn to the specific problem of nettle processing in

gorillas and construct an MDP to represent it.

Nettle processing

Byrne and Russon (1998) provide an account of how go-

rillas process nettles to make them more palatable to eat

and digest. Nettles are covered in a layer of small spines,

which make nettles painful to eat, especially when these

spines brush against the gorilla’s sensitive lips. In order to

eat nettles with a minimum of suffering, the gorillas em-

ploy a sequence of actions that allow them to avoid the

majority of the spines and encase the rest of the spines in

relatively spine-free leaves.

Much of the interest in gorilla nettle processing is due to

the hierarchical nature of the action sequence. Although it

is possible to model hierarchical processes as MDPs, these

models are substantially more complicated than non-hier-

archical processes. To understand how social information

can be used to aid in the acquisition of action sequences,

we consider a simplified, non-hierarchical model of nettle

processing.

We simplify this process into a series of four procedural

steps, in which the gorilla: (1) gathers leaves from a plant

and removes the petioles; (2) removes debris from the

bundle of leaves; (3) uses a handful of leaves to wrap the

rest of the bundle in; and (4) eats the bundle of leaves,

leaving their hands free to collect a new bundle of leaves.

This setup assumes that each of the actions (1–4) is already

contained in the learner’s repertoire, and we do not model

how the actions in each step are initially learned. Learning

(1) may be particularly challenging, as this action is

composed of two lower-level actions, stripping leaves from

the stem, and tearing off the petioles of the stripped leaves.

Additionally both lower-level actions may need to be re-

peated before the gorilla has enough partially prepared

leaves in her hand.

The sequential dependencies of the actions in this se-

quence motivate our choice to use it as a focal example.

Once the gorilla has wrapped the leaves into a bundle, she

cannot remove debris. Likewise, once the gorilla has eaten

the bundle, no further modification to the leaves can be

made.

The resulting states, and the actions linking the states

together, are given in Fig. 1. We include in this diagram an

‘‘alternative action’’ which represents the option of non-

nettle foraging. This problem has three potential ‘‘branch-

es’’ of actions. First the gorilla could eat the bundle of

leaves raw. Second, the gorilla could fold the leaves over

and then eat them. Or third, the gorilla could pick out

debris from the leaves, either then eat them or fold the

leaves over, and then eat them. After each eating action, the
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gorilla enters into the same state (shown in gray), where

she is then able to gather and process more leaves. How-

ever, once the leaves are folded, we assume that the gorillas

do not unfold them and then remove debris, which conse-

quently means that the order in which these action happens

influences the types of reinforcement the individuals

receive.

We assume that the state where the leaves are folded and

the debris have been removed is experienced as distinct

from the state where the leaves are folded and the debris

have not been removed. The discriminability of these states

can arise either from actual immediate perceptual differ-

ences, or from the short-term memory of the gorilla. We

include the option of abstaining from processing nettles

and foraging elsewhere to aid understanding of why go-

rillas might process nettles.

Learning to process nettles, like other food processing

behaviors, is difficult because feedback is only provided at

the final step when the gorilla actually eats the bundle of

leaves. The gorilla must choose which actions to perform

based solely on past knowledge of the outcomes of these

actions. Moreover performing some actions may preclude

the gorilla from performing others. This means that short

action sequences, like failing to remove the debris or

folding the leaves, may be easier to learn, but less re-

warding. We use a series of simulations to explore how

social and asocial learners might solve this problem.

Simulations on the nettle task

We examine how each learner explored and exploited the

nettle MDP over a series of 50 trials. Each trial consists of

a sequence of actions that returned the learner to the initial

state shown in gray in Fig. 1. We examine the payoff of

each learner, and the number of times each learner per-

formed the canonical action sequence, i.e., steps 1–4 above.

Because the actions each learner performs are stochastic,

we measure these values for 100,000 learners.

In the case of social learners, the performance of each

learner depends on from whom they learn. To create a pool

of experienced demonstrators, we artificially construct a

population of 50 learners who explored the MDP simul-

taneously. At each time step, a single learner is selected

from the population at random and performs an action.

When a learner completes 50 trials, they are removed from

the population and are replaced by a novice learner. Our

goal was not to model a realistic demographic process, but

to provide an environment with experienced social learn-

ers. Because this population is initially naı̈ve, the perfor-

mance of new social learners improves as the number of

competent demonstrators in the population increases. Pilot

simulations showed that after a turnover of 5000 learners,

performance was no longer increasing. Because of this, we

allow for a turnover of 10,000 learners in each simulation

before measuring average payoff and number of canonical

sequence performed.

The performance of learners in an MDP depends cru-

cially on the structure and rewards of the MDP and the

parameters of the learning algorithm.

We examine learners who explore the MDP charac-

terization of the nettle task given in Fig. 1. We assume

initially that any action that does not involve eating gives a

reward of 0, consuming a correctly processed nettle gives a

reward of 10, and the remaining two eating actions give a

reward of 1; subsequently, we varied the reward of the

alternative action from 2 to 10. We find similar qualitative

results to those presented here for a broad number of payoff

values.

For simplicity, we assume that learners have no

knowledge of the task and so set V(s) and W(a) to 0, and

because the MDP is deterministic, we set b = 1. We

truncate the learner’s eligibility trace to n = 2 initially,

although we later vary this parameter. To provide a fair

comparison between the performance of social and asocial

learners, we use the values of a, c, and s that maximize an

asocial learner’s average payoff on a given MDP. Because

the value of the alternative action changes the optimal

learning parameters, the learning parameters are optimized

separately for each set of payoffs in the nettle processing

task.

Using the optimal values allows us to examine the

benefit that social information may provide an ideal asocial

learner. If we find that social learners perform better than

asocial learners who are not optimized to a task, it cannot

be determined whether this difference is due to the pres-

ence of social information, or to a parameterization that

favors social learning. By focusing on the case where
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Fig. 1 A graphical representation of gorilla nettle preparation.

Arrows between nodes represent possible actions and the transitions

between states. Dotted lines represent eating actions
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asocial learners are optimal, we are able to examine whe-

ther social learners can perform better than the best, and

hence any, asocial learner, regardless of the pa-

rameterization. Other learning parameters will optimize the

performance of social learners; however, to provide a clear

comparison, in our simulations social learners use the same

learning parameters as asocial learners.

We used a radial basis function learning algorithm to

optimize the performance of asocial learners (Buhmann

2000). In this algorithm, we sample a large number of

values of a, c, and s and estimate the performance of asocial

learners who use these sampled learning parameters. We

then use these sampled values to interpolate the perfor-

mance of learners for unsampled parameter values. This

interpolation was done by averaging the value of nearby

sampled points weighted by the inverse of their cubed Eu-

clidean distance. This interpolation provides an efficient

way to approximate the topography of the learner’s payoffs

as a function of a, c, and s, even when a learner’s perfor-

mance is highly stochastic. This process was then repeated,

with new samples being drawn from ever smaller radii

around the current estimated optima, until the process

converged on an optimal value. Convergence was assessed

by examining whether the difference between the largest

estimated payoff and the median estimated payoff was

\0.01 for the 5000 learners in the current radius.

We also ran a second set of simulations to examine how

the performance of social and asocial learners depended on

the parameters chosen. Given the large number of pa-

rameters, evaluating all possible permutations of parameter

values would lead to a combinatorial explosion. Because of

this, we focused on a single MDP and examined how the

performance of learners changed when varying one pa-

rameter at a time. Our baseline MDP was a version of the

nettle task when the alternative payoff had a reward of

four, and learners used the optimal learning parameters,

a = 0.18, c = 0.99, and s = 0.47.

We explored the following ranges of parameter values.

We varied the eligibility trace of each learner from 1 to 5,

the number of trials from 10 to 100 in increments of 10,

and the size of the population of social learners from 10 to

100 in increments of 10. We examined 20 values of a
evenly distributed between 0.1 and 0.9, 20 values of c
between 0.01 and 0.99, and 20 values of s between 0.1 and

2.

All simulations were hand coded and run in Python 2.7

(python.org).

Nettle task results

Overall, we find that the use of social information increases

learners’ average payoff and leads to faster acquisition of

the canonical action sequence compared to the optimal

asocial learner.

We examine the average payoffs of the asocial and so-

cial learners and the frequency with which they performed

the canonical action sequence (Fig. 2). We find that when

the alternative actions provided a low reward, social

learners on average receive a higher payoff than asocial

learners (Fig. 2a). This difference is a result of the social

learners exploiting the canonical action sequence more

frequently than asocial learners (Fig. 2b). However, when

the alternative action provides a sufficiently high reward,

the exploration effort required to learn the canonical se-

quences outweighs the benefit of discovering it. In this

case, we find that both the social and asocial learners do not

exploit the canonical actions sequence, but instead learn to

use the alternative action.

We find that the difference in performance between

social and asocial learners is primarily driven by the early

acquisition of the canonical action sequence by social

learners. As an illustration of this, we chart the probability

that a social or an asocial learner will perform the cano-

nical action sequence over the course of their life (in

Fig. 2c). We find that at all times, social learners are more

likely to perform the canonical actions sequence than

asocial learners. On a social learner’s first trial, they have a

roughly 60 % chance of performing the canonical action

sequence. This chance then drops for subsequent trials as

the learner explores other options, before rising again as

the social learner learns to exclusively exploit the canonical

action sequence.

We examine a range of parameter values and find that

social learners consistently outperformed asocial learners.

Results of this parameter exploration are shown in Fig. 3.

When we vary the number of trials a learner performs, we

find that decreasing the number of trials decreases perfor-

mance of both asocial and social learners, but that social

learners continue to outperform asocial learners (Fig. 3a).

As the number of learning trials increases, the difference

between asocial and social learners first increases and then

decreases, but even at 100 learning trials there is a per-

sistent difference between social and asocial learners

(Fig. 3a). When we vary the number individuals in a

population, we find that the performance of social learners

is less in small population, but that their performance

quickly plateaus for medium-sized populations ([20

learners), and the performance of social learners always

remains above that of asocial learners (Fig. 3b).

When we vary the length of the learners’ eligibility trace

(Fig. 3c), we find that asocial learners’ performance de-

creases, but even for a short eligibility trace (length 1), the

performance of social learners is left largely unchanged.

With longer eligibility traces, asocial performance
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improves, but remains below the performance of social

learners.

We also systematically vary a, c, and s. The results are

given in Fig. 3d–f. We find that as learning parameters

deviate from the optimum, the performance of asocial

learners decreases. However, for all parameter values, so-

cial learners perform better than or as well as asocial

learners. Social and asocial learners tend to perform

similarly, and poorly, when the learning parameters were

ill-suited to the MDP. As can be seen in Fig. 3d–f, the

optimal values of s and a for social learners differ from

those of asocial learners.

Broad and deep tasks

The findings on the nettle task suggest that incorporating

social information into a general purpose asocial learning

algorithm can substantially improve learning outcomes.

This is particularly the case when the alternative action

provides a lower payoff. When the alternative action pro-

vides a high payoff, both social and asocial learners

perform that alternative action, and the difference in their

performance shrinks. This suggests that when the task

learners face is relatively simple, social information pro-

vides little benefit. In order to investigate when social in-

formation provides a benefit to learners in a more general

setting, we move away from our cartoon of the nettle

stripping problem to investigate two sets of simple stylized

MDPs: broad tasks, and deep tasks.

The difficulty of learning an action sequence depends

primarily on two things, the length of the action sequence,

and the number of base actions available to the learner. We

examine how each of these factors might impact the benefit

of social information by first considering a set of MDPs

where learners are faced with an increasing number of

possible actions and then by examining a set of MDPs

where learners are faced with increasingly long sequences

of actions.

Simulations on broad and deep tasks

Both the breadth and depth tasks are built up from a basic

binary decision task. In the binary decision task, learners

(a) (b) (c)

Fig. 2 Learners’ performance on the nettle MDP. Black lines

represent asocial learners; gray lines represent social learners. All

measurements are averaged over 100,000 learners. a Learners’

average per-trial payoff, b the frequency at which learners performed

the canonical sequence averaged over all trials, and c the frequency at

which learners performed the canonical sequence on each of their 50

trials, on the nettle MDP with alternative action payoff of 4

(a) (b) (c)

(d) (e) (f)

Fig. 3 Learners’ average

performance on the nettle MDP

with an alternative action payoff

of 4, when varying a number of

trials, b population size, c the

eligibility trace, d c, e s, and f a.
Black lines represent asocial

learners; gray lines represent

social learners
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are placed at a central node and face two options. Each

option leads to a different state, from which the only action

available returns them to the home state. The initial tran-

sition to each state has a payoff of 0. The transition back to

the home state from one of the states has a payoff of 1, the

other has a payoff of 2. This creates a simple learning

problem for asocial learners. To solve this problem,

learners simply need to explore both branches and associ-

ate one branch with the higher reward.

In the case of broad tasks, we increase the number of

available actions the learner has in the home state, but keep

the number of actions in each sequence the same. We set

the reward of one of the possible choices to 2 and all other

choices to 1. This creates a challenging task as there are

many options to be explored. We vary the number of al-

ternative choices available between 1 and 9.

In the case of deep tasks, we increase the number of

actions it takes for the learner to receive a reward and

return to the home state. We vary the number of interme-

diate actions between 1 and 9. The difficulty in this prob-

lem is not exploration of the task—there are only two

choices—but rather, creating a chain of associations be-

tween the final reward and the initial choice.

In all other respects, the details of these simulations are

identical to those conducted on the nettle processing task.

Here, we examine the average lifetime payoff of each

learner, which also provides the frequency with which the

learner performs the canonical action sequence; a learner

obtains a payoff of 2 when performing the canonical action

sequence, and a payoff of 1 in all other cases. All measures

are averaged over 100,000 learners.

Broad and deep task results

Once again we find that social information consistently

provides a benefit to learners. The results of these

simulations are given in Fig. 4. Social information pro-

vides a greater benefit on broad tasks with a large number

of options as compared to few. Social information also

provides a greater benefit on deep tasks where the length of

the actions sequence was long as compared to short. We

find that the performance of social learners does not sub-

stantially change with the difficulty of the task; in most

tasks, social learners perform at ceiling. In contrast, the

performance of asocial learners decreases as the difficulty

of the learning problem increases. This drives the differ-

ence in performance between social and asocial learners.

Discussion

In this paper, we used Markov decision processes to model

the learning of action sequences. We presented a simple and

empirically supported model of individual learning, TD

learning, and demonstrated the benefit that social informa-

tion can provide within this learning framework. We find

that the addition of social information allows learners to find

and exploit high-payoff behaviors more effectively than

through asocial learning alone. Further analyses suggest that

social information is particularly helpful both when learners

are presented with a choice of many possible actions, and

when learning a long sequence of actions to receive a re-

ward: two cases that are challenging for asocial learners.

These results highlight how social information can be

integrated into an effective asocial learning algorithm to

provide a benefit. In this study, we modeled social learning

as performing the same action as a randomly selected

demonstrator when the learner is unsure of which action to

choose. There are many ways of incorporating social in-

formation into TD learning. This particular implementation

provides an empirically supported yet minimal way of

modeling how social information can influence a learner’s

behaviors. This use of social information likely underesti-

mates the impact social information on actual learning

processes. Nonetheless, we observe a consistent advantage

to the use of social information.

Early theoretical work on social learning focused on a

dichotomy between costly individual learning and cheap

social learning (Boyd and Richerson 1985). One of the

longstanding messages of these evolutionary models of

social learning is that in order for social learning to be

beneficial, learners must be selective in whom they copy

(Rogers 1988; Henrich and Boyd 1998). In this framework,

we show how a learner can simultaneously use social in-

formation and individual learning to solve a complex

problem. Even though we assume that learners do not

preferentially select their demonstrator, social information

still provides a benefit to these learners. These results agree

with previous work in suggesting that even copying a

random demonstrator can be effective when it is combined

with asocial learning (Enquist et al. 2007).

In this analysis, we have used a simple model of social

learning: Individuals defer to social information when

(a) (b)

Fig. 4 Learners’ performance on the a breadth and b depth MDPs.

Black lines represent asocial learners, gray lines represent social

learners. All measurements are averaged over 100,000 learners
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unsure what to do, restricting their copying to individuals

in the same state. In reality, many animals also exploit

information provided by other animals occupying different

states, through various forms of observational learning

(Hoppitt and Laland 2013), which may further enhance the

utility of social learning. Nonetheless, this minimal use of

social information is consistent with a number of different

mechanisms of social information transfer, such as local

and stimulus enhancement, response facilitation, and

emulation (Zentall and Galef 1988; Heyes 1994; Hoppitt

and Laland 2008). For instance, Hoppitt et al. (2007) found

evidence of a response facilitation effect on the rate at

which domestic fowl initiated bouts of preening. The rate

at which chickens initiated bouts of preening was more

strongly related to the number of birds already preening in

the same aviary than it was to the number of birds preening

in an adjacent, visually obscured aviary, thus ruling out the

possibility that any plausible external cues could be wholly

responsible for the behavioral synchrony. For social ani-

mals in particular, it is highly plausible that the facilitatory

effects of other animal’s actions will frequently suffice to

push them to take the same options when in the same state.

Our model shows how response facilitation not only gen-

erates behavioral homogeneity across individuals, but also

may accelerate sequence learning.

Although we implement social learning as a form of

copying, there are other potential social influences on

learning. One notable example is the case of Israeli rats

learning to strip pinecones. Terkel (1996) found that juve-

nile rats learn to strip pinecones in an efficient, spiral manner

if presented with pinecones that had been partially processed

in this way. However, juveniles who received unprocessed

pinecones did not learn to use the spiral method to strip

pinecones. The social influence on learning in this case is not

a direct form of copying, but is instead mediated by inter-

actions with the partially processed products of an experi-

enced learner. These same processes may be at work in other

animals as well. While we do not explicitly model this form

of social influence, this process can be readily understood

within a TD learning framework. One of the difficulties in

learning, highlighted in the deep task, was forming asso-

ciations between early actions and later rewards. The same

difficulty is present here; the effort required to remove the

first segments of a pinecone outweighs the nutritional re-

ward, however, this is not the case for later segments pro-

vided the spiral method is used. Partially processed

pinecones then provide the learner with an opportunity to

learn and build associations in the later stages of the learning

problem. These associations can then serve as secondary

reinforcers when learning on un-processed pinecones.

In conclusion, this paper offers insights into how social

information may contribute to learning action sequences

and suggests that social information may be beneficial even

when learners are only able to copy single-component ac-

tions of a longer sequence. Seen another way, in the con-

text of learning action sequences, social information only

needs to point the learner in the right direction; individual

learning can handle the rest.
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