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Social learning has been documented in a wide diversity of animals. In free-living animals, however, it has

been difficult to discern whether animals learn socially by observing other group members or asocially by

acquiring a new behaviour independently. We addressed this challenge by developing network-based

diffusion analysis (NBDA), which analyses the spread of traits through animal groups and takes into

account that social network structure directs social learning opportunities. NBDA fits agent-based models

of social and asocial learning to the observed data using maximum-likelihood estimation. The underlying

learning mechanism can then be identified using model selection based on the Akaike information

criterion. We tested our method with artificially created learning data that are based on a real-world

co-feeding network of macaques. NBDA is better able to discriminate between social and asocial learning

in comparison with diffusion curve analysis, the main method that was previously applied in this context.

NBDA thus offers a new, more reliable statistical test of learning mechanisms. In addition, it can be used to

address a wide range of questions related to social learning, such as identifying behavioural strategies used

by animals when deciding whom to copy.

Keywords: animal cultures; social learning; diffusion of innovations; social network; agent-based model;

maximum-likelihood estimation
1. INTRODUCTION

Social learning involves the acquisition of new behaviours

from other group members, e.g. by directly observing and

copying their behaviour (Heyes 1994). Evidence collected

over the past decade suggests that a wide diversity of

animals learn socially, including mammals, birds, fishes

and invertebrates (Galef & Laland 2005; Leadbeater &

Chittka 2007). Potato washing by a group of Japanese

macaques (Macaca fuscata) provides one possible example

of social learning. After a young female macaque started to

wash sandy potatoes in a stream, three quarters of her

group members acquired this new food processing

technique within 9 years. Because the new behaviour

spread most quickly between relatives and close associates,

Kawai (1965) suggested that the animals imitated each

other. However, whether potato washing was learned

socially is still debated (Galef 1992, 2004; Lefebvre 1995).

More generally, it has been difficult to demonstrate social

learning in wild animals, despite much effort and interest

in disentangling social and asocial learning mechanisms.

The study of social learning in animals, especially in

primates, is often guided by an interest in the evolutionary

roots of human culture and cognition (McGrew 1998;

Tomasello 1999; Boesch 2003; Laland 2008). Investi-

gating social learning in animals is also of broad relevance

for understanding animal behaviour, cognition and

evolution. By altering ecological or social environment,

social learning dynamics can have a direct impact on
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evolutionary dynamics in a process known as cultural

niche construction (Laland et al. 2000) that can lead to

coevolutionary processes between cultures and genes

(Feldman & Laland 1996).

Assessing the importance of social learning for

behavioural adaptation and evolution depends crucially

on being able to distinguish social from asocial learning in

free-living animals, as illustrated by the potato-washing

example above. However, our ability to pursue this

research is limited by the methods that are currently

available to investigate learning dynamics in animal

societies. Common approaches include laboratory experi-

ments with captive animals and observational studies of

variation in behavioural repertoires among populations of

wild animals (Galef 2004). However, both approaches

have been criticized for the inability to reflect social and

ecological conditions in the wild (van Schaik et al. 2003),

or to reliably identify social learning (Galef 2004; Laland &

Janik 2006).

An alternative method to infer learning mechanisms is

to investigate the spread (or diffusion) of new behavioural

traits through a group of animals. The main method that is

used to analyse these dynamics is diffusion curve analysis

(DCA). In this approach, the investigator plots the

cumulative number of animals with the trait over time

and then fits mathematical curves to these data. The basis

for this approach is that different learning mechanisms

should produce different learning curves (figure 1). For

example, simple mathematical models predict that asocial

learning results in decelerating diffusion curves. This

happens because the number of naive individuals

decreases over time. In contrast to this pattern, social
This journal is q 2009 The Royal Society
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Figure 1. Shapes of diffusion curves consistent with two
learning mechanisms. Simple mathematical models, which
assume randomly interacting individuals, predict that asocial
learning (e.g. by trial and error) produces decelerating curves,
and social learning (e.g. by observing other group members)
results in sigmoid-shaped curves.
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learning causes sigmoid diffusion curves owing to a

temporally increasing number of skilled individuals,

from which naive individuals can learn. Often it is

assumed that any accelerating curve (e.g. exponential or

hyperbolic sine) is produced by social learning, and any

non-accelerating curve (including linear curves) indicates

asocial learning (Reader 2004).

DCA has been criticized heavily for failing to reliably

infer learning mechanisms in animals (Reader 2004).

A major criticism is that the method assumes that animals

interact randomly when they learn from one another. This

assumption is frequently violated, as it has been shown

that social learning dynamics can be influenced by factors

such as age, sex, dominance and kinship (Tanaka 1998;

Nicol & Pope 1999; Smith et al. 2002). Because these

social learning biases can strongly influence the dynamics

of trait spread through a group of animals (Voelkl & Noe

2008), the predicted shapes of the diffusion curves might

be incorrect (Reader 2004).
(a) Network-based diffusion analysis

In light of these concerns, we offer network-based

diffusion analysis (NBDA) as an alternative to DCA.

NBDA takes into account the order and timing with which

individuals in the group acquired the behavioural trait.

These data are compared with a social network that

contains information about potential social learning

opportunities, e.g. in the context of grooming, feeding or

simply the time that animals spend in close proximity.

NBDA therefore makes use of the fact that socially learned

traits will spread most quickly between animals that have

strong connections in a social network (Coussi-Korbel &

Fragaszy 1995).

To apply NBDA, we developed two agent-based

models (ABMs) in which the trait is learned by either

pure asocial or pure social learning. The social learning

ABM assumes that social learning dynamics are explicitly

linked to a social network, while asocial learning occurs

probabilistically among individuals without regards to the

social network (e.g. through independent trial and error

learning). Both models are fit to the observed diffusion

data using maximum-likelihood methods. The model that

fits better indicates the learning mechanism that is more

likely to have produced the observed data.
Proc. R. Soc. B
To test the performance of NBDA relative to the DCA,

we generated large numbers of artificially created diffusion

data and then applied both methods to these data. The

artificial data were created with the ABMs that are fit in

the NBDA. In this way, we had perfect knowledge of the

underlying learning mechanism for each dataset.

Throughout, we used an empirically derived social

network (and variations of it) to simulate social learning

dynamics. In this way, we assessed the statistical power of

the method based on a real-world scenario, and we

demonstrate that the method can be applied to the actual

data. We also provide the necessary computer script in R

(R Development Core Team 2007) for others to

implement the method and to extend it for their own

purposes (see the electronic supplementary material).
2. MATERIAL AND METHODS
(a) Description of the ABMs

In the following we describe two ABMs. Because both models

are very similar in their structure, they are described in one

framework. The model descriptions are based on the ODD

protocol for describing individual- and ABMs (Grimm &

Railsback 2005; Grimm et al. 2006).

(i) Purpose

The purpose of the models is twofold. Firstly, they are used to

simulate how a new trait spreads through a group of animals

by either asocial or social learning. Secondly, both models

form the central element of the NBDA, in which they are fit to

observed diffusion data (the pattern of trait spread through a

group of animals).

(ii) State variables and scales

The main entities in both models are agents that can exist in

two states: (i) naive, i.e. the agent did not yet learn the new

trait and (ii) skilled, i.e. the agent already learned the new

trait. In the first model, each agent possesses an asocial

learning rate that is identical for all agents. This learning rate

determines the probability that a naive agent will acquire the

new trait though asocial learning that happens independently

of other agents. In the second model, agents are connected

through a user-defined social network. The strengths of the

connections in this network determine the social learning

rates at which naive agents learn from skilled group members.

(iii) Process overview and scheduling

The model dynamics proceed in discrete time steps. In each

step, naive agents can learn asocially in the first model and

socially in the second model. The simulation stops once all

agents become skilled. In the first model, a naive agent will

become skilled with a probability that equals its asocial

learning rate. In the second model, the probability that a

naive agent becomes skilled depends on the parameter t and

the sum s of the strengths of all connection with agents that

were already skilled in the last time step. We assume that as s

increases, the probability of social learning increases

asymptotically to 1. The probability p that a naive individual

i acquires the trait is given by

pð i ÞZ1KexpðKt,sÞ: ð2:1Þ

Note that equation (2.1) makes the assumptions that s is

linearly related to the rate of learning and that for fixed s this

learning rate is constant over time.

http://rspb.royalsocietypublishing.org/
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Figure 2. Schematic of the social network that was used as
model input to generate artificial diffusion data. Circles
represent individuals, and lines indicate social connections
between the individuals. Line widths are proportional to the
strengths of social connections. This network is based on an
empirically observed co-feeding network of eight Japanese
macaques (Ventura et al. 2006). See §2 for details.
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(iv) Initialization

Both models are always initialized in the same way, with all

but one agent set to be naive, and one agent set to be skilled.

This skilled agent is called the inventor.
(b) Generation of artificial diffusion data

Artificial diffusion data were generated using both models

assuming a group size of eight agents. The asocial learning rate

in the first model was set to 0.125. The social network for the

second model was based on an empirically observed co-feeding

network of a group of eight Japanese macaques (figure 2;

Ventura et al. 2006). The co-feeding indices calculated

by Ventura et al. (2006) were obtained by focal animal

observations, which resulted in a non-symmetric interaction

matrix (i.e. the co-feeding index of dyad A-B is not necessarily

the same as for dyad B-A). To use these data as model input we

created a symmetric matrix by calculating for each dyad the

mean of the two values in the asymmetric matrix. The

parameter t was set to 0.2. (Note that NBDA can also use

non-symmetric interaction matrices as input. However, we

transformed the network data because we suspected that the

asymmetries in the interactions in this example data set were

artefacts that emerged from the data collection.)

Artificial diffusion data were created for each model

separately. Simulations for one model were performed for

eight different initial conditions, each with a different individual

as inventor. Simulations were repeated 10 000 times for every

initial condition, resulting in 160 000 sets of artificial diffusion

data in which the learning mechanism was known (10 000

diffusion datasets!8 individuals as inventor!2 models).
(c) Diffusion curve analysis

This analysis requires as input the cumulative number of

skilled individuals for each time step. Nonlinear least-squares

fitting was used to fit a decelerating function

f ðxÞZ 1Ka=expðb,xÞ; ð2:2Þ
Proc. R. Soc. B
and a sigmoid function

f ðxÞZ 1=ð1CexpðaKb,xÞÞ; ð2:3Þ

to the data. Based on the residual sum of squares, likelihoods

and the Akaike information criterion (AIC) were calculated

for each function (Burnham & Anderson 2002). A smaller

AIC value indicates a better fit of the corresponding function,

and we assumed that a difference in AIC values of more than

two indicates a better fit of the model with the lower AIC

value. We also calculated Akaike weights (Burnham &

Anderson 2002) for each model, which can be interpreted

as the probability that a specific model produced the given

data (in comparison with the other model).
(d) Network-based diffusion analysis

The required input for this analysis is the number of

individuals in the group, the corresponding social network

(as a matrix) and the times at which the individuals became

skilled. Using maximum likelihood, the unspecified para-

meters are fit in the two models; these involve the asocial

learning rate in the first model and t in the second model. For

the identification of the parameter value that maximizes the

log likelihood we used the optimize function that is provided in

R (R Development Core Team 2007).

The log-likelihood values for a specific model parame-

trization were directly calculated from the given model

parameters and diffusion data without performing any

simulations of the model itself. This is possible because the

likelihood for a specific model is completely determined by

the corresponding probabilities of successful and unsuccess-

ful learning events (i.e. for each time step the probabilities

that naive individuals learned or failed to learn). To calculate

the overall log likelihood, we calculated the log likelihoods for

single events separately (i.e. in each time step for each

individual) and then summed them. If it was observed that an

agent learned in a specific time step, then the corresponding

log likelihood is given by the natural logarithm of the related

learning probability. In the first model, this probability is

given directly by the asocial learning rate. The learning

probabilities in the second model had to be calculated

separately for each time step because they depend on the

value of t and on the number and identity of individuals that

were already skilled in the previous time step (as described in

§2(a)(iii)). If an agent did not learn, then the log likelihood

equals the natural logarithm of one minus the corresponding

learning probability. The log likelihood is zero if the

individual was already skilled in the previous time step.

Based on the log likelihoods, we calculated AIC values for

each model (Burnham & Anderson 2002). As for DCA, we

assumed that one model fits better if the difference in AIC

values is larger than two (for an analysis with a different

assumption see §3(d)), and we calculated Akaike weights for

each model.
3. RESULTS
(a) Simulations of social learning

For artificial diffusion data created by pure social

learning, DCA was able to correctly infer social learning

in 66.2 per cent of all analyses. In 26.2 per cent of the tests,

however, DCA erroneously inferred asocial learning, with

the remaining 7.6 per cent of cases being undecided

because the differences in the AIC values were smaller

than two. By contrast, the NBDA had much higher power

http://rspb.royalsocietypublishing.org/
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Figure 3. Results for artificial diffusion data that were created by pure social learning. The analysed data consisted of 80 000 sets of
artificial diffusion data, 10 000 for each inventor. (a,b) Results for DCA; and (c,d) results for NBDA. (a,c) The proportions of
analyses in which DCA and NBDA inferred social learning (black) and asocial learning (light grey) are shown for each inventor
separately. Inferences of the learning mechanisms were based on the differences in AIC values of the two alternative models, which
were fit to the diffusion data. We assumed that a difference of at least two indicates strong support for one model. The ‘either’ (dark
grey) category contains cases where neither model was supported on this basis. (b,d ) The distribution of the Akaike weights for the
social learning model was calculated from the whole data for each method. The social network, which was used for creating artificial
data and for NBDA, is shown in figure 2.
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for detecting social learning. This method correctly

inferred social learning in 84.3 per cent of the datasets

and asocial learning in only 3.3 per cent of the datasets.

Taking a closer look at these results revealed that the

performance of DCA depended strongly on the identity of

the inventor (figure 3a). Specifically, DCA was more likely

to erroneously classify the learning mechanism when the

inventor belonged to a subgroup of very strongly

connected individuals (i.e. individuals Sya, Shi and Han

in figure 2). This makes intuitive sense. If an individual has

strong connections with few individuals, but these individ-

uals have mostly weak connections with the remaininggroup

members, then the new trait is likely to first spread very

quickly in the strongly connected subgroup. The weakness

of connections outside the subgroup produces lower

learning probabilities, which slows the subsequent spread

of the trait and favours fitting of decelerating curves (i.e.

evidence for asocial learning if DCA is used). By contrast,

the NBDA takes the network structure into accountand thus

had much higher power to correctly infer social learning.
(b) Simulations of asocial learning

Results for diffusion data produced by asocial learning

revealed similar differences between the two methods.

Again, the DCA performed poorly. Asocial learning was

correctly inferred in only 57.6 per cent of the simulated

datasets, while social learning was incorrectly inferred in

30.2 per cent. NBDA provided stronger inferences of the

learning mechanism, as this method found evidence for

asocial learning in 80.1 per cent of simulated datasets, and

for social learning in only 6.4 per cent.
Proc. R. Soc. B
In these analyses, the DCA was less dependent on the

identity of the inventor (figure 4a). This outcome was

expected because asocial learning rates were identical for

all agents and they were not influenced by other group

members. The reason why social learning was erroneously

inferred in approximately 30 per cent of the tests reflects

stochastic effects in small groups, which cause asocial

learning to ‘accidentally’ produce sigmoid-shaped curves.

Again, the NBDA has an advantage in these cases because

this method only finds strong support for social learning

if the spread of the new trait corresponds to the structure

of the social network.

(c) Akaike weights

Analyses of Akaike weights revealed further problems with

DCA and advantages of NBDA. The results for the DCA

showed bimodal distributions in the simulation of social

and asocial learning (figures 3b and 4b). In most cases, the

model with the correct learning mechanism had very high

Akaike weights, which indicate strong support for this

model. In a considerable proportion of all analyses,

however, the model with the correct learning mechanism

was supported very poorly, thus indicating that the model

with the incorrect learning mechanism was supported very

strongly. This shows that the identification of the wrong

learning mechanism is an inherent problem of the DCA

and cannot be solved by performing more conservative

analyses (e.g. by setting a higher threshold for the

difference in AIC values when judging one model relative

to the other; the results of a corresponding analysis are

shown in ‘Additional analyses.doc’ in the electronic

supplementary material).

http://rspb.royalsocietypublishing.org/
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Figure 4. Results for artificial diffusion data that were created by pure asocial learning. The analysed data consisted of 80 000
sets of artificial diffusion data, 10 000 for each inventor. (a,b) Results for DCA; and (c,d) results for NBDA. (a,c) The
proportions of analyses in which DCA and NBDA inferred social learning (black) and asocial learning (light grey) are shown for
each inventor separately. Inferences of the learning mechanisms were based on the differences in AIC values of the two
alternative models, which were fit to the diffusion data. We assumed that a difference of at least two indicates strong support for
one model. The ‘either’ (dark grey) category contains cases where neither model was supported on this basis. (b,d ) The
distribution of the Akaike weights for the asocial learning model was calculated from the whole data for each method. The social
network, which was used for NBDA, is shown in figure 2.
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By contrast, we found unimodal distributions of Akaike

weights for the NBDA for simulations of social and asocial

learning, and in most cases, the model with the correct

learning mechanism was very well supported (figures 3d

and 4d). This shows that the better performance of the

NBDA is a robust result.
(d) Additional analyses

The electronic supplementary materials provide additional

analyses to test the performance of DCA and NBDA under

the conditions of (i) varied structure of the social network,

(ii) different group sizes, and (iii) changing the threshold

in AIC differences, which is used in model selection. Our

results showed that the performance of NBDA and DCA

is not strongly impacted by variation in network structure.

By contrast, an increase in group size led to an

improvement in the performance of NBDA and DCA.

Increasing the threshold in AIC differences from two to

four increased the cases in which DCA and NBDA reveal

inconclusive results (i.e. that none of both models fits

better). While this effect strongly reduced the frequency

with which NBDA identifies the wrong learning

mechanism, the performance of DCA was only weakly

affected and the frequency with which DCA identified the

wrong learning mechanism remains high.

The electronic supplementary material also includes an

analysis of the performance of NBDA when using a

network with disturbed structure. This analysis showed

that the results obtained by NBDA are robust to small

disturbances in the structure of the social network, which

for instance might be caused by observation errors.
Proc. R. Soc. B
Finally, the electronic supplementary material includes

an extended version of NBDA, in which a model of social

and asocial learning is fitted to the diffusion data. The

performance of this method in detecting social learning

was similar to that described above for NBDA.
4. DISCUSSION
Our results show that heterogeneous social networks can

alter the shape of the diffusion curve, and this can lead to

erroneous assessments of the learning mechanism in

DCA (Reader 2004). In addition, the simulations

revealed that stochastic effects in small groups can alter

the shape of the diffusion curve, thus explaining why the

DCA so often failed to correctly infer asocial learning in

our tests. By using additional information about the

social network and the order in which individuals

acquired the behavioural trait, NBDA overcomes these

problems. Thus, NBDA provides greater power to infer

social learning. NBDA is also more conservative than

DCA because it is much less susceptible to incorrectly

inferring social learning, when only asocial learning

processes were occurring. Furthermore, our additional

analyses showed that NBDA is robust, including to errors

in estimating network structure and alternative methods

of analysis.

The strength of NBDA lies in its integration of different

kinds of information about the diffusion process and the

social network into a comprehensive analysis that is based

on an information-theoretic framework (Burnham &

Anderson 2002). In contrast to NBDA, most other

approaches that incorporated information on social

http://rspb.royalsocietypublishing.org/
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interactions to identify social learning used only limited

information about the spread of the new trait to infer

learning mechanisms. For instance, Perry et al. (2003) and

Bonnie & de Waal (2006) focused solely on the outcome of

a diffusion process by comparing the social network

structure with the distribution of a dyadic-interaction

behaviour. While Perry et al. (2003) performed a simple

test to infer whether dyads that performed a new

behaviour also have stronger connections in a social

network, Bonnie & de Waal (2006) conducted a more

complex analysis in which they tested whether the match

between the social network and the distribution of the

behaviour also could have emerged by chance. Boogert

et al. (2008) and Morrell et al. (2008) applied conceptually

similar approaches to Bonnie & de Waal (2006), but

they used more information about the diffusion process

by integrating information on the order in which a

new foraging behaviour spreads through a group.

The timing of learning events was, however, neglected in

these analyses.

Other than NBDA, the approach of Kendal et al.

(2007) is the only one that we are aware of that

incorporates information about the order and the timing

of learning events. Some elements of their approach are

similar to NBDA, as they also estimate parameters that

describe social and asocial learning processes from the

observed diffusion data. The main advantages of NBDA to

the approach of Kendal et al. (2007) are that we used

maximum likelihood to parametrize our models, and it is

easier to collect the required information to implement

NBDA, which is especially important for studies on

wild animals.

(a) Applying network-based diffusion analysis

Network-based diffusion analysis offers the identification

of social learning in groups of captive animals as well as in

wild populations. In contrast to the experiments with

captive animals, in field studies it is likely to be difficult to

ensure high-quality data that accurately record the first

expression of the behaviour by individuals, especially if

the spreading behaviour is practiced only rarely. We

expect that poor data quality will mainly impact the

power to detect social learning, because the fit of the

corresponding model should be most sensitive to

erroneous information on the time of learning events or

the social network.

Here, we focused on only one empirically observed

social network. This approach is used as a proof of concept

for NBDA, and to explore the effects of heterogeneous

networks on the performance of DCA. In an additional

analysis, we have shown that our findings are robust to

variation in the structure of this network. Nevertheless, it

is still possible that the network size and topology have an

effect on the performance of one or both methods. As

demonstrated by our analyses, the ABMs can be used to

investigate the expected performance of the methods in a

specific group of animals (i.e. of a particular size or with a

different social network). Even in the case when data are

unavailable on the social network for a specific group,

social networks from other groups of the same species

might be used to estimate the method’s performance

(although of course it would always be preferable to use

networks derived from the group of interest). For example,

our results indicate that DCA should not be used for
Proc. R. Soc. B
studies of Japanese macaques. Results of such analyses

that were already conducted for this species (e.g. Galef

1992; Lefebvre 1995) should thus be treated cautiously.

(b) Extensions of network-based diffusion analysis

In our description of the NBDA, we assumed a static

group whose composition does not change during the

spread of a new trait. This assumption might not always

be well justified because diffusion processes can take

multiple years to complete, as shown by the example of

potato washing in macaques (Kawai 1965). In these

cases it is possible that births, deaths and migrations

alter the number of skilled and naive individuals,

which might crucially influence the dynamics of the

diffusion process. In contrast to DCA, NBDA can easily

control for demographic changes by incorporating

these changes in the corresponding ABMs. To

implement this extension, the input for the described

models would simply require time series of group sizes

and social networks.

Similarly, it has been argued that individual differences

in asocial learning abilities can strongly impact diffusion

dynamics, and under such conditions S-shaped diffusion

curves can emerge from pure asocial learning (Laland &

Kendal 2003; Reader 2004). Although this is not

necessarily true (Henrich 2001), our models offer the

possibility to include individual variations, not only for the

ability to learn asocially but also for social learning.

The ABMs that are used in the NBDA allow only one

learning mechanism to take place. We extended this

approach to allow both social and asocial learning to occur

simultaneously (in the electronic supplementary material

we provide a performance analysis of this extension and an

R script to implement it). Incorporating such a model in

NBDA provides an opportunity to test whether both

learning mechanisms influenced the spread of a new trait.

Furthermore, models that are restricted to a single

learning mechanism are nested in the model that includes

both mechanisms. This structure allows for likelihood

ratio testing, which could be used to infer learning

mechanisms based on p-values. Furthermore, a model

that combines social and asocial learning is needed to

analyse the data that include time periods prior to the first

occurrence of a new trait (such data can be analysed using

the extended version of NBDA that is in the electronic

supplementary material). Using such additional infor-

mation will increase the power to detect social learning.

However, fitting a pure social learning model would not be

reasonable in this case, because at least the first individual

that acquired the trait must have learned asocially.

In our social learning model, we assumed that the

probability of learning from a skilled individual was

influenced only by spatial proximity of skilled and

unskilled individuals during feeding. While this assump-

tion seems to be reasonable, real-world scenarios might be

more complex, because individual characteristics such as

age, kinship or rank of either individual might influence

learning probabilities (Boyd & Richerson 1985; Coussi-

Korbel & Fragaszy 1995). Although such influences are

assumed to be likely because they should increase

adaptability of social learning, only a few attempts have

been made to test these hypotheses with empirical data

(see Laland (2004) for a review). NBDA offers a

framework to identify which social and individual
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characteristics impact social learning processes. This

could be achieved by identifying different networks that

represent dyadic relationships according to the specific

social interactions or individual characteristics, such as

time spent grooming or age differences. Functional

relationships between the values of dyadic relations and

social learning probabilities can be formulated similar to

the example used in this paper (see equation (2.1)). Fitting

alternative models, in which social learning probabilities

are determined by different networks or combinations of

networks, could be used to identify which factors most

likely influenced social learning dynamics in the observed

diffusion of a new trait. Of course, it is also possible to

extend the asocial learning model in a similar way to test

for effects of individual characteristics such as age or rank

on asocial learning rates.

NBDA is a flexible tool that allows more extensions than

those described above. Additional influences or alternative

assumptions about the dynamics of social and asocial

learning can be included in NBDA, provided that they

allow unambiguous calculation of learning probabilities for

each individual in each time step. However, it should be

noted that model selection based on AIC values favours

models with fewer parameters if the alternative models

explain the observed data equally well. The potential that a

more complex model explains the data better than a simple

model, in general, increases with increasing amount of

observed data (i.e. number of individuals that have acquired

the behaviour). Therefore, identifying complex learning

strategies that require more parameter-rich models will

require relatively large sample sizes.
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