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Chapter 5

Quantifying diffusion in social 
networks: a Bayesian approach
Glenna Nightingale, Neeltje J. Boogert, Kevin N. Laland, and Will Hoppitt

Introduction to social transmission  
in groups of animals

Social learning is often broadly defined as ‘learn-
ing that is influenced by observation of, or interac-
tion with, another animal (typically a conspecific) 
or its products’ (Heyes 1994). However, the phrase 
‘influenced by’ is unacceptably vague, and we pre-
fer to characterize social learning as learning that 
is facilitated by observation of, or interaction with, 
another individual, or its products (Hoppitt and La-
land 2013). In addition, we prefer the more specific 
term ‘social transmission’ to refer to the process by 
which behavioural traits spread through groups. 
We define social transmission as occurring when 
‘the prior acquisition of a behavioural trait T by 
one individual, A, when expressed either directly in 
the performance of T or in some other behaviour 
associated with T, exerts a lasting positive causal 
influence on the rate at which another individual, 
B, acquires and/or performs the behavioural trait’ 
(Hoppitt and Laland 2013).

The study of social learning was initially mo-
tivated by an interest in the cognitive or psycho-
logical mechanisms underpinning social learning 
(e.g. Galef 1988; Heyes 1994), leading to research 
conducted in controlled laboratory conditions (e.g. 
Zentall et  al. 1996). In recent years, the focus has 
shifted to animal traditions and culture, driven 
by the discovery of group-specific behaviour in a 
number of taxa, including primates (e.g. Whiten 
et al 1999; S. Perry et al. 2003), cetaceans (e.g. Ren-
dell and Whitehead 2001) and birds (e.g. Madden 
2008). Such group-specific behaviour patterns often 

appear to be the result of different behavioural in-
novations spreading through groups by social 
transmission. Many researchers are now study-
ing the conditions under which novel behavioural 
traits spread and form traditions in the field or in 
a captive group context, in which the subjects are 
free to interact with one another (e.g. meerkats 
(Suricata suricatta) (Thornton and Malapert 2009); 
vervet monkeys (Chlorocebus pygerythrus) (Van de 
Waal et al. 2010); and humpback whales (Megaptera 
novaeangliae) (Allen et al. 2013)). Such research has 
motivated the development of novel methods for 
studying social learning in freely interacting groups 
(Laland and Galef 2009; Kendal, Galef et  al. 2010; 
Hoppitt and Laland 2013). Laboratory experiments 
provide valuable insights into learning mecha-
nisms, and other aspects of social interaction, but it 
remains challenging in a natural or field context to 
ascertain whether social learning has occurred and 
quantify its impact without the use of sophisticated 
statistical methods.

In our use of the terminology, ‘social transmis-
sion’ can be distinguished from ‘diffusion’, as the 
latter term refers to the observed spread of a trait 
through a group, irrespective of the cause of the 
spread. Therefore, a trait might be said to have dif-
fused through a group without any evidence that 
this occurred by social transmission. For instance, 
the diffusion may result from independent asocial 
learning by each individual, or there may be an 
unlearned social influence on behaviour, as occurs, 
for instance, when animals influence each other’s 
movements, as is reported in sticklebacks (Atton 
et al. 2012).
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evidence that the time of and probability of discov-
ering of novel food patches followed an association 
network in a wild population of great tits (Parus 
major), blue tits (Cyanistes caeruleus), and marsh tits 
(Poecile palustris). Likewise, Allen et al. (2013) found 
strong evidence that the acquisition of lobtailing, a 
foraging innovation, followed an association net-
work in a wild population of humpback whales. 
Kendal, Custance, et  al. (2010) also applied the 
method to analyse the diffusion of a novel foraging 
behaviour in lemurs (Lemur catta), although there 
was no evidence that social transmission followed 
the network in that case.

In other cases, network-based diffusion analysis 
has been applied to diffusion data arising when 
captive groups of animals are presented with a 
novel foraging task. For example, Boogert et  al. 
(2008) constructed a nearest neighbour association 
network for three groups of five starlings (Sturnus 
vulgaris) each and then separately presented each 
group with six tasks. Hoppitt, Boogert, et al. (2010) 
applied a continuous time of acquisition diffusion 
analysis to these data and found strong evidence 
of social transmission, although further analysis 
(Hoppitt, unpublished data) found that there was 
little evidence that it followed the social network. 
Specifically, a model with social transmission fol-
lowing the association network had more support 
than a model without social transmission, but it had 
similar support to a model that had homogeneous 
connections between individuals in each group. 
Under such circumstances, the evidence for social 
transmission comes from the observation that indi-
viduals were more likely and/or faster to solve the 
task once other individuals in the group had solved 
it (Hoppitt and Laland 2013). One drawback of 
many such captive studies is that animals may have 
little opportunity to avoid each other, as a result of 
which network-based diffusions may be less like to 
be detected, either because all network associations 
are strong or because network connections become 
superfluous in confined spaces, where learning be-
tween poorly connected individuals is feasible.

Network-based diffusion analysis has also been 
used to analyse diffusion experiments on groups of 
captive sticklebacks (Atton et  al. 2012; M. Webster 
et  al. 2013). Atton et  al. (2012) expanded network-
based diffusion analysis methodology by recognizing 

A promising alternative approach to highly 
structured laboratory experimentation for infer-
ring and quantifying social transmission in natu-
ralistic group contexts is network-based diffusion 
analysis (also known as NBDA) (Franz and Nunn 
2009). Network-based diffusion analysis infers so-
cial transmission when the time (or order (Hoppitt, 
Boogert, et  al. 2010)) of acquisition of the trait by 
individuals in animal groups follows a social net-
work. Similar models have been used in the social 
sciences (Valente 2005); their relationship with  
network-based diffusion analysis is discussed in 
Hoppitt and Laland (2013). In this chapter, we will 
first briefly review the uses of network-based dif-
fusion analysis and then explain why a Bayesian 
formulation is required. We will then present our 
Bayesian formulation of network-based diffusion 
analysis and test it using simulated data.

Network-based diffusion analysis

Network-based diffusion analysis infers and quan-
tifies the magnitude of social transmission in a set of 
diffusion data from the extent to which the pattern 
of spread follows a social network. There are two 
versions: time of acquisition diffusion analysis (also 
known as TADA) (Franz and Nunn 2009), which 
takes as data the times at which individuals ac-
quired the target behavioural trait, and order of ac-
quisition diffusion analysis (also known as OADA) 
(Hoppitt, Boogert, et  al. 2010), which is sensitive 
only to the order in which they do so. The former 
is more powerful but makes stronger assumptions. 
The greater power of time of acquisition diffusion 
analysis stems from the fact that order of acquisi-
tion diffusion analysis is only sensitive to social 
transmission if it results in a difference in the rela-
tive rate of acquisition by individuals, whereas time 
of acquisition diffusion analysis is also sensitive 
to absolute changes in the rate of acquisition and 
thereby has more data with which to detect social 
transmission (Hoppitt and Laland 2011).

Despite being a recently developed method, 
network-based diffusion analysis has already been 
used a number of times to analyse diffusion data 
from wild and captive animal populations, usually 
using an association metric to obtain the social net-
work. For example, Aplin et al. (2012) found strong 
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with a foraging task and who vary in their asocial 
learning ability in a way that seems to imply social 
transmission occurs. For example, the best asocial 
learner may be well connected to the second-best 
asocial learner, making it appear that the latter is 
learning from the former, when in fact they are 
solving the task independently (i.e. through aso-
cial learning processes). For a single diffusion, this 
chance possibility is automatically accounted for 
when assessing the evidence for social transmission.

If multiple foraging tasks are presented to dif-
ferent groups of individuals, and a pattern in the 
resulting diffusion data consistent with social 
transmission arises each time, then this adds to the 
evidence that social transmission is occurring; it is 
unlikely that a chance pattern of asocial learning 
abilities, consistent with social transmission, occurs 
in all cases (although confounding variables are 
possible) (see Hoppitt, Boogert, et al. 2010 for dis-
cussion). If multiple diffusions are run on the same 
individuals, and a similar pattern arises, this too 
will be taken by the model as being strong evidence 
of social transmission. However, in this case if a 
chance pattern of asocial learning ability consistent 
with social transmission happens to arise over the 
single group of individuals, it is repeated over mul-
tiple diffusions. If a model without random effects 
is fitted, each diffusion will be unrealistically taken 
as an independent set of data supporting the hy-
pothesis that social transmission is occurring, thus 
potentially resulting in a spurious result. In a simi-
lar way, a chance pattern in asocial learning abili-
ties counteracting the effects of social transmission 
would lead us to underestimate the effects of social 
learning, with an overinflated level of certainty.

By including an individual random effect on the 
asocial rate of learning, the model accounts for the 
fact that the same individuals have the same (or 
similar) asocial learning ability in each diffusion. 
However, random effects can be difficult to imple-
ment using maximum likelihood methods (used to 
fit network-based diffusion analysis models thus 
far), especially when the random effects structure 
is complex, because one has to integrate the like-
lihood function across all the possible values the 
random effects could take. It is easier to include 
random effects in a Bayesian model, using Markov 
chain Monte Carlo methods (Gelman et al. 2004).

that individuals can move between multiple states. 
For example, rather than just moving from ‘naïve’ 
(not solved the task) to ‘informed’ (solved the task) 
states, individuals move from being ‘naïve’, to hav-
ing ‘discovered’ the task, to ‘solving’ the task. In 
principle, social influences might operate on both the 
discovery and the solving transition, and Atton et al. 
(2012) found that the social network affected each 
transition in a different way. Atton et al. (2012) also 
expanded network-based diffusion analysis to allow 
for multiple options available to solve the task (cf. 
Kendal et al. 2010).

While network-based diffusion analysis has, thus 
far, been used to assess whether the pattern of dif-
fusion follows a measured association network, 
it could instead be used to compare the support 
for different hypothesized pathways of diffusion 
(Franz and Nunn 2009; Hoppitt and Laland 2011). 
For instance, one could test networks correspond-
ing to different theories of ‘directed social learning’ 
(Coussi-Korbel and Fragaszy 1995). For example, 
the hypothesis that all social transmission is verti-
cal would correspond to an asymmetrical binary 
network in which all connections lead from parents 
to offspring (Hoppitt and Laland 2013).

Why do we need Bayesian network-
based diffusion analysis?

Network-based diffusion analysis can be expanded 
such that it quantifies the evidence for social trans-
mission across a number of diffusions (Hoppitt 
et al. 2010), although care must be taken in the in-
terpretation of such models (Hoppitt and Laland 
2011, 2013). This expansion provides a valuable 
way of combining information arising from diffu-
sions across different groups of animals (e.g. Web-
ster et  al. 2013). The expansion of network-based 
diffusion analysis to multiple diffusions could also 
be valuable where researchers have repeated diffu-
sions across the same group, or groups, of animals 
(e.g. Boogert et al. 2008), especially when they only 
have a limited number of animals, allowing them to 
obtain good statistical power.

However, a statistical problem arises if they fail 
to account for the fact that the same individuals are 
involved in multiple diffusions. To illustrate this, 
imagine a group of experimental subjects presented 
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of equal magnitude, set at 1. This allows us to show 
that the extracted parameter estimates closely 
match the real ones in a simple case. However, we 
stress that the approach works effectively for more 
realistic social networks. Bayesian network-based 
diffusion analyses for networks with more complex 
structures can be found in the tutorial posted on the 
Laland lab website (<http://lalandlab.st-andrews.
ac.uk/>).

We simulate data corresponding to ten different 
tasks performed by the same group of ten individu-
als. We use a fixed value for the social effect (set at 
0.6) and a fixed value for the baseline rate of asocial 
learning (0.3). The output from each data simula-
tion includes both latency-to-solve times and solv-
ing order for the group of ten individuals. Random 
effects for each individual i were also incorporated 
in the simulation by assigning a number Ri from a 
set of numbers with variance 9, and multiplying its 
rate of asocial learning by a factor of exp (Ri). The 
incorporation of the random effects at the indi-
vidual level thus models the heterogeneity arising 
from variation in asocial learning ability across the 
ten individuals. For ease of reference, each individ-
ual was given a unique name (Ned, Ted, Ron, Wim, 
Jim, Sue, Fay, Lou, Joe, and May).

Figure 5.1a shows the solve times for the ten dif-
fusions, and Figure 5.1b shows the solve times for 
the first four tasks, with each task represented by a 
unique plotting symbol. Finally, Figure 5.1c shows 
how performance across the tasks varies among 
individuals. From Figure 5.1c, it is evident that the 
variation in solve times is highest for Ned, Ted, 
Jim, Ron, and Wim. For Fay, Lou, Joe, and espe-
cially May, the latencies to solve the tasks are much 
shorter than those of the other individuals, and the 
variation in times is low (the points on the plot have 
merged into one).

Previous formulation of time  
of acquisition diffusion analysis

The time of acquisition diffusion analysis model 
is based on standard survival models using an ex-
ponential distribution. We therefore use survival 
analysis terminology, referring to the ‘hazard func-
tion’ as giving the instantaneous rate at which an 
individual acquires the target trait, which in this 

Bayesian methods take a joint prior distribution 
for the model parameters, quantifying researchers’ 
knowledge about the plausible values those param-
eters could take before receiving the data, and up-
date this in light of the data to yield a joint posterior 
distribution. The joint posterior distribution thus 
quantifies the state of knowledge arising from the 
data, showing which combinations of parameter 
values are plausible. The marginal posterior distri-
bution for a parameter (often shortened to ‘poste-
rior distribution’) is the joint posterior distribution 
integrated over all the possible values of the other 
parameters in the model (including all the possible 
values for each level of each random effect). For rel-
atively simple models, a mathematical expression 
can be obtained for the exact posterior distribution 
for each parameter of interest. However, for more 
complex models, such as those containing ran-
dom effects, this is not possible, and Markov chain 
Monte Carlo is used.

Markov chain Monte Carlo is a procedure that 
simulates drawing values for the model parameters 
from the joint posterior distribution for all param-
eters in the model. By drawing a large number of 
values for one parameter from the joint posterior 
distribution, one is automatically accounting for 
uncertainty in the other parameters in the model. 
Consequently, when using Markov chain Monte 
Carlo, instead of integrating the likelihood over the 
random effects numerically, inferences on a given 
random effect parameter can be made by simulat-
ing draws from the marginal posterior distribution 
of this parameter. For a comprehensive explanation 
of the use of Markov chain Monte Carlo for ran-
dom effects models, we refer the reader to Hoff’s 
(2009) book on Bayesian statistics. Here, we develop 
a Bayesian version of time of acquisition diffusion 
analysis and then test whether it solves the prob-
lems outlined above, using simulated data. To aid 
explanation of the model formulation, we describe 
the simulated data first.

Simulated diffusion data

The data were simulated from the time of acquisi-
tion diffusion analysis model using the Gillespie 
algorithm (D. Wilkinson 2012). The social network 
used to simulate the data consisted of interactions 
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The hazard function for the model is expressed 
as:

 
t t z t R t1  i i i0λλ ( )( ) ( ) ( ) ( )= −

 (1)

such that

 
sR t a z t 1  i

j

N

ij j
1

∑( ) ( )= +








=

 (2)

case is the task solution. There are two parameters 
of interest in the basic time of acquisition diffusion 
analysis model: the rate of social transmission be-
tween individuals per unit of network connection, 
s, and the baseline rate of trait performance in the 
absence of social transmission, 0λ . Throughout this 
chapter, we refer to the s parameter as the social 
transmission parameter, and to 0λ  as the baseline 
parameter.
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Figure 5.1 (a) Plot showing simulated diffusion times for each of the ten tasks. The points for each diffusion are joined in a separate line and 
represent a unique task. (b) Plot showing simulated diffusion times for Tasks 1 to 4. Each diffusion represents a unique task and is represented by 
a unique plotting symbol. (c) Simulated solve times per individual. The points per individual represent the time at which this individual solved the 
given tasks. Points for each diffusion (task) are joined in a separate line. In cases where the variation in solve times for a given individual is small, 
some of the points on the graph have merged together.
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Here ( )Γ ti  and Bi(t) are linear predictors similar to 
those used in a generalized linear model.1 The term 
xk,i(t)  is the value of the kth variable for individual 
i at time t, βk is the coefficient giving the effect of 
variable k on asocial learning, giving the natural 
logarithm of the multiplicative effect per unit of  
xk,i(t). Similarly, γk is the coefficient giving the effect 
of variable k on the rate of social transmission (Hop-
pitt and Laland 2013).

Bayesian formulation of time of 
acquisition diffusion analysis

In principle, the formulation of the model can re-
main the same for a Bayesian approach as for a 
model fitted by maximum likelihood. However, 
here we wish to include random effects, and re-
parameterize the model in a way that makes it 
easier to use in a Bayesian context. Thus, we apply 
a Bayesian time of acquisition diffusion analysis to 
the simulated dataset described in ‘Previous for-
mulation of time of acquisition diffusion analysis’ 
to assess its performance under different circum-
stances. To illustrate the importance of both random 
effects and social transmission, four models were 
considered based on their inclusion/exclusion. Two 
of the models (Models 1 and 2) do not include ran-
dom effects, while Models 3 and 4 do. Likewise two 
of the models (Models 1 and 3) do not include an 
s parameter, while Models 2 and 4 do. Please see 
Table 5.1 for details.

The linear predictors are easily adapted to in-
clude random effects. For Models 3 and 4 for ex-
ample, random effects ε at the individual level 
were considered such that ε = {ε1, . . . , ε10} and the 
total number of individuals is ten. The term Ri(t) in 
Equation 2 is therefore expanded to

 R t s a z t  exp ( )i
j

N

ij j k
1

∑ ε( ) ( )= +








=

 (6)

where k 1, . . . , 5{ }∈ and depends on which task is 
involved. The rate of trait performance tiλ ( ) for in-
dividual i, at time t therefore becomes

where tiλ ( )  is the rate at which individual i ac-
quires the task solution at time t, λ ( )t0  is a baseline 
acquisition function determining the distribution 
of latencies to acquisition in the absence of social 
transmission (that is, through asocial learning), and 
zi(t) gives the status (1 = informed, 0 = naïve) of in-
dividual i at time t. The (1– zi(t)) and zi(t) terms en-
sure that the task solution is only transmitted from 
informed to uninformed individuals (Hoppitt, Bo-
ogert, et al. 2010). Previous versions of time of ac-
quisition diffusion analysis allow for an increasing 
or decreasing baseline rateλ ( )t0 (Hoppitt, Kandler, 
et al. 2010). Here, we restrict ourselves to expanding 
the version for a constant baseline rate (i.e. λ ( )t0 =  

0λ ) (Hoppitt, Boogert, et  al. 2010), although the 
version for a non-constant baseline rate can be ex-
panded in the same way.

The model assumes that the rate of social trans-
mission between individuals is proportional to the 
connection between them which is given by aij (see 
Equation 2). The model is used to generate a likeli-
hood function, allowing it to be fitted by maximum 
likelihood or analysed using Bayesian methods. 
Social transmission is inferred if a model includ-
ing s is better than a model with s = 0, using, for ex-
ample Akaike’s information criterion, if maximum 
likelihood fitting is used, or Bayes factor if Bayes-
ian methods are used (see ‘Bayesian formulation of 
time of acquisition diffusion analysis’). For simplic-
ity, here we assume that a social effect (i.e. s > 0) is 
always indicative of social transmission, although 
in reality this need not be the case (Atton et al. 2012).

Network-based diffusion analysis can be adapted 
to include other variables influencing the rate of so-
cial transmission or asocial learning that vary across 
individuals and/or time, by expanding the model 
for V continuous (or indicator) variables as follows:

∑( ) ( )( ) ( ) ( ) ( )= Γ +








=

R t s t a z t B t exp expi i
j

N

ij j i
1
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where

 ∑γ( ) ( )Γ =
=

t x t  i
k

V

k k i
1

,  (4)

and

 t x tB  i

V

k k i
k =1

,∑β( ) ( )=  (5)

1 This general formulation allows the effects of individual-
level variables on asocial learning and social transmission to 
differ. Hoppitt, Boogert, et al. (2010) suggested a constrained 
additive model constraining for all k, and the multiplicative 
model by constraining for all k.
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This expression represents the product of the prob-
ability density of individual i solving the task for 
the first time and the probability density of the na-
ive individuals ( j i ≠ ) that did not solve the task 
for the first time in the time period under consid-
eration. Note that this expression is used when all 
the individuals in the study have solved the task 
within the observation period. Individuals which 
have solved the task are classified as uncensored 
individuals. In contrast, an individual that does not 
solve the task during the observation period is clas-
sified as a censored individual. Censored individu-
als are taken into account in the analysis, using the 
modification below.

The combined likelihood for all the events 
n N    1 :  { }∈ in the observation period is expressed 
as

 L t |
n

N

i n
1

1∏ ω ϕλ( )( )
=

−  (9)

where there are N performance events (i.e. the given 
task was solved N times), and where ϕ denotes the 
probability density of the naive individuals which 
did not perform the trait during the observation pe-
riod t t  N1[ ]− . In particularϕ is expressed as

t t texp  
j i

j N Q N∏ λ( )( )− −





≠

The terms tN and tQ denote the last time of perfor-
mance and the time of the end of the observation 
period, respectively. Equation 9 thus represents the 
likelihood arising from the data for all individuals, 
both censored and uncensored.

Prior specification

A fundamental requirement for inferring param-
eter values using a Bayesian approach is that 
suitable priors are specified for each parameter. 
The prior represents the researcher’s prior knowl-
edge of the distribution of the parameter’s under  
consideration. The prior specified here for the  
social transmission parameter s′ was a uniform 
prior such that Uslog  ~ 1,1( ) [ ]′ − .  A similar prior is 
specified for the baseline parameter 0λ  such that

Ulog( ~ 10,100)λ [ ]− .

These priors are very wide, which would indicate 
a lack of prior knowledge about the plausible values 

t t z t s a z t1 exp    i i
j

N

ij j k0
1

∑λ λ ε( ) ( )( ) ( ) ( ) ( )= − +








=

 (7)

To allow us to more easily set a prior distribution 
reflecting our state of knowledge (see below), Equa-
tion 7 is then re-parameterized to obtain
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j
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ij j k0
1
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j
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1

0∑λ λ ε( )( ) ( ) ( )= − ′ +








=

where s s    0λ′ = . The effect of social interactions on 
the rate of learning s′  and the baseline rate of learn-
ing 0λ  are the two parameters of interest. We refer 
to the re-parameterized s′ as the unscaled social 
transmission parameter, since it is not scaled such 
that it is quantified relative to the rate of asocial 
learning, as s is. The full parameter vector θ is de-
fined as s , , ,0  

2θ ελ σ{ }= ′ ε , where ε refers to random 
effects at the task level. The variance term    

2σε de-
notes the variance for the distribution of the task-
level random effects.

Likelihood function for time of 
acquisition diffusion analysis

Given the observed data, ω, the likelihood that 
the nth individual learns the behaviour at time tn 
(where tn is the observed time of acquisition for in-
dividual i) is expressed as

L t t t t t

t t t

|  exp    

 exp( )    

i n i n i n n n

j i

J

j n n n

1 1 1 1

1 1∏

ωλ λ λ

λ

( ) ( )( ) ( ) ( ) [ ]

( ) [ ]

= − −

− −

− − − −

≠
− −

   

(8)

where n > 1, and J denotes the number of individu-
als in the group during the time period t t   n n  1 − − . 

Table 5.1 Models considered.

Model parameters

1 λ0

2 λ0, s’

3 λ0, εi (i = 1:10),    
2σε i denotes individual effects

4 λ0, s’ εi (i = 1:10),    
2σε i denotes individual effects
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Table 5.1, which may vary in the number of pa-
rameters they possess. With a number of plausi-
ble models for a given dataset, it is desirable that 
model discrimination is performed so as to de-
termine which model (or, in some cases, which 
group of models) has (have) more support for the 
data observed. To achieve this, the reversible jump 
Markov chain Monte Carlo algorithm allows for 
posterior model probabilities (the probability that 
model is the true model, given that one of them is) 
to be obtained for each model, which is particularly 
useful when there is a large number of competing 
models. A common summary statistic related to 
the posterior model probabilities is the Bayes factor 
(Lee 1989), which is simply the ratio of the model 
probabilities for two specified models (so long as 
the prior model probabilities are equal). This is usu-
ally a preferred measure of relative evidence, since 
it does not implicitly assume that one of the mod-
els in the set considered is true. The Bayes factor is 
used specifically to compare two competing models 
(hypotheses) for a given dataset.

Mathematically, for model discrimination, we 
extend the previous Bayesian approach to treat the 
model itself as a parameter and then form the joint 
posterior distribution over parameter and model 
spaces. However, the posterior distribution is no 
longer of fixed dimensions, since different models 
have a different number of parameters. Thus, to ex-
plore the posterior distribution and to obtain pos-
terior summary statistics, we use a reversible jump 
Markov chain Monte Carlo approach (Lesaffre and 
Lawson 2012).

Note that this approach comprises a two-step 
algorithm which involves the Metropolis Hastings 
algorithm and a reversible jump step. The first step 
involves updating the parameters given the model 
state, and the second step involves updating the 
model itself. This results in a sequence of model 
states at the end of the simulation which represent 
the exploration of model space during the iterations 
within the simulation. Figure 5.2 illustrates this 
concept graphically. Model discrimination in the 
Bayesian context is discussed in the tutorial pro-
vided on Bayesian network-based diffusion analy-
sis on the Laland lab website. In addition, a data 
example and sample R code are provided to illus-
trate the concept.

these parameters could take. Furthermore, uniform 
priors specified on a log scale express a prior belief 
that the parameters are more likely to be near zero. 
These are chosen fairly arbitrarily for the purposes 
of this simulation. In this section, we discuss how a 
researcher might set these priors so they represent 
the prior state of knowledge and discuss the cir-
cumstances under which this is important. A hier-
archical prior (Gelman 2006; Gustafson et al. 2006) 
is specified for the random effects N  ~ 0, i

2ε σ( )ε . A 
gamma distribution is used as a prior for the vari-
ance term σε

2 .

Generating posteriors using updating methods

The Bayesian approach (R. King et  al. 2010; Lee 
1989) usually involves the use of an Markov chain 
Monte Carlo algorithm, which is deployed to gener-
ate a sequence of values which converge to the joint 
posterior distribution of the parameters (see ‘Why 
do we need Bayesian network-based diffusion 
analysis?’) given the data observed. Note that after 
the simulations are conducted, the properties of the 
resulting posterior sample (after removing the out-
put from the initial 10% of simulations, called the 
‘burn in’) will reflect the properties of the posterior 
distribution of the parameters under consideration. 
There are various methods of parameter updating, 
two of which are Metropolis Hastings and Gibbs 
sampling. The parameters in this analysis were up-
dated using a random walk Metropolis Hastings 
(Gamerman 1997; Gamerman and Lopes 2006; Mc-
Carthy 2007) update method.

For the individual model simulations, each sim-
ulation consisted of 10,000 iterations and a con-
servative burn in (initial 10% of the iterations) was 
removed before obtaining the posterior sample. In 
addition, we demonstrate the application of Bayes-
ian methods to diffusion analysis to achieve model 
discrimination. For this analysis, we employ a re-
versible jump Markov chain Monte Carlo algorithm 
to discriminate between the four models considered 
in this analysis.

Model discrimination

For a given dataset, there are typically a number 
of plausible candidate models, such as shown in  
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to generating accurate estimates of the magnitude 
of social transmission and that a failure to do so 
could lead researchers to seriously underestimate 
or overestimate the social influence.

Figure 5.3 shows the trace plot for the unscaled 
social transmission parameter s’ for the two models. 
A trace plot is a time series plot which provides a 
rough indication of how well the Monte Carlo chain 
has mixed and has explored the posterior distribu-
tion. The x-axis represents the iteration number 
within the simulation, and the simulated values of 
the parameter are represented on the y-axis. From 
the trace plots, it is clear that there is more variation 
in the posterior values in Model 2 than in Model 4, 
again indicating that Model 2 is poorer.

In both Models 2 and 4, the correlation between 
the social transmission and baseline rate parameters 
was negative but small. However, the random effect 
parameters were found to be correlated with each 
other and also with the baseline rate (and, to a lesser 
degree, with the social effect parameter). These cor-
relations explain why the posterior estimates for the 
baseline rate of solving are so poor, a point to which 
we return in the final section. For illustration, Fig-
ure 5.4 shows the correlation between the baseline 
rate parameter and the random effect parameters 
for individuals 9 and 10. The density plots for each 
random effect parameter are shown in Figure 5.5.

From Figure 5.4, it is clear that there is a nega-
tive correlation between the baseline rate parameter 

Results

posterior parameter estimates

The posterior parameter estimates for the param-
eters in each model are provided in Table 5.2. As 
noted in ‘Simulated diffusion data’, we used a fixed 
value of 0.6 for the social effect and a fixed value of 
0.3 for the baseline rate of asocial learning. Below 
we consider the relative merits of the four models in 
accounting for the data. However, for the moment 
we merely draw attention to the fact that the poste-
rior parameter estimates for the model parameters 
differ between the relevant models. Most strikingly, 
the parameter likely to be considered of greatest in-
terest to users of network-based diffusion analysis, 
the social transmission parameter s’ differs strongly 
between Models 2 and 4, which do not, or do, con-
trol for random effects, respectively. The posterior 
estimates for the baseline rate parameter 0λ  showed 
relatively less variation between models.

From the results, the median posterior estimate 
of the unscaled social transmission parameter was 
found to be higher in Model 4 than in Model 2 (the 
other model which contained this parameter). The 
log of the estimate in this model (−0.50) is closest to 
the log of the value (−0.51) used to simulate the data 
(s’ = e−0.50 = 0.61), whereas the estimate generated 
by Model 2, which fails to control for random ef-
fects, is poor (s’ = e−6.62 = 0.001). Hence, the analysis 
shows that controlling for random effects is critical 

3844 iterations

M
o
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el

3
4

1000
219 iterations 402 iterations

Iteration

2000 3000 4000 5000

Figure 5.2 Plot illustrating model updating 
during a theoretical simulation involving two 
models: Model 3 and Model 4. Note that the 
model state does not necessarily change at each 
iteration.
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Table 5.2 Posterior parameter estimates are provided in natural logarithms (except the random effects and variance parameter) and are 
accompanied by symmetric credible intervals for the models considered. For the social transmission and baseline rate parameters, the posterior 
median and credible intervals are provided. For the random effects and variance parameter, the posterior mean and credible intervals are provided. 
The median is the preferred summary statistic when the distribution of the parameter of interest is skewed.

parameter Model 1 Model 2 Model 3 Model 4

log(s') −6.62 (−9.81, −2.53) −0.50 (−0.95, −0.07)

log(λ0) 2.48 (2.27, 2.68) 2.47 (2.25, 2.67) 3.57 (2.38, 5.61) 2.88 (0.78, 4.58)

ε1 (Ned) −2.07 (−4.14, −0.72) −3.65 (−8.59, −0.53)

ε2 (Ted) −2.14 (−4.18, −0.83) −3.94 (−8.12, −0.82)

ε3 (Ron) −1.94 (−3.98, −0.62) −3.29 (−7.62, −0.29)

ε4 (Wim) −1.44 (−3.46, −0.16) −1.82 (−5.48, 0.750)

ε5 (Jim) −0.63 (−2.67, 0.79) −0.06 (−2.14, 2.13)

ε6 (Sue) 0.48 (−1.61, 1.82) 1.29 (−0.66, 3.42)

ε7 (Fay) 1.12 (−0.78, 2.46) 1.99 (0.03, 4.11)

ε8 (Lou) 2.09 (0.07, 3.40) 2.97 (0.99, 5.09)

ε9 (Joe) 2.89 (0.83, 4.23) 3.76 (1.85, 5.87)

ε10 (May) 4.35 (2.32, 5.73) 5.24 (3.23, 7.37)

   
2σε

7.29 (3.86, 12.62) 9.79 (5.05, 16.19)
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Figure 5.3 Trace plots for the social effect parameters for (a) Model 2, and (b) Model 4. The x-axis shows the iteration number, and the y-axis 
shows the log of the simulated value for the parameter. The first 1000 iterations were treated as ‘burn in’ and were removed before plotting. 
Identical y-axes are used in the plots to highlight the difference in variance of the simulated values obtained under the two models’ hypotheses.
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the posterior value of the random effect parameter 
representing either of these individuals increases, 
then that of the other individual would also increase.

The density plots for each random effect param-
eter are shown in Figure 5a; the density plot for a 
given parameter can be thought of as a normal ap-
proximation to the distribution of this parameter. 
Each random effect parameter represented in Figure 

and the random effect parameter representing Joe. 
A similar effect is observed for May. The interpreta-
tion of these posterior correlations would be that, as 
the posterior value of the random effect parameter 
for Joe increases, that of the baseline rate param-
eter decreases. A positive correlation was observed 
between the random effect parameters for Joe and 
May. The interpretation in this case would be that, as 
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Figure 5.4 Scatter plot showing the 
correlation in the joint posterior distribution 
between the baseline rate and the random 
effect parameters for individual 9 (Joe) and 
individual 10 (May).
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Figure 5.5 Density plots per random effect parameter: (a) ten random effects; (b) three random effects.
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considered (Comparison 2; i.e. random effects), in 
each case the model that contains a social transmis-
sion parameter is by far the best supported model.

These conclusions are reinforced by consideration 
of the Bayes factor associated with model compari-
sons, which can be derived by dividing the posterior 
model probability for the better supported model 
by the posterior model probability for the alterna-
tive. From the analysis using Comparison 3, we note 
that the Bayes factor in favour of random effects (i.e. 
(Model 3 + Model 4)/(Model 1 + Model 2)] is greater 
than 269.5, indicating decisive posterior support for 
these parameters and their importance in model-
ling the data observed. The Bayes factor in favour 
of Model 4, which contains the social transmission 
parameter, against Model 3, which does not, is 17.2, 
which suggests that there is very strong evidence for 
Model 4 (against Model 3). The Bayes factor in favour 
of the social transmission parameter (i.e. (Model 2 + 
Model 4)/(Model 1 + Model 3)] is 17.1, which sug-
gests very strong support for the inclusion of this 
parameter in the model. In this simulated dataset, 
strong support for s implies a general influence of 
other individuals on the rate of solving, since here 
the network is comprised of homogenous patterns 
of association. However, more typically, support 
for a model containing s will be indicative of social 
transmission along pathways of association.

A Bayesian approach to quantifying 
diffusion on social networks: conclusions 
and future directions

We have developed a Bayesian version of network-
based diffusion analysis as a means to control for 

5 is associated with a bell-shaped plot, and the 
width of this ‘bell’ gives an indication of the spread 
of the posterior values for this parameter. The x 
coordinate, corresponding to the apex of the bell, 
represents the posterior parameter value, which has 
the highest density and represents the mean (or av-
erage) for the distribution. The density plots there-
fore provide a visual summary of the spread and 
centre of the distribution of the posterior values for 
the parameters considered. As expected, for the ten 
individuals considered, these vary in their effect on 
the rate of solving, reflecting individual differences 
in the ability to solve the tasks. This is illustrated 
more clearly in Figure 5b, where it is evident that 
May had a positive effect, Ned a negative impact, 
and Sue had little impact on the rate of solving.

Markov chain Monte Carlo replication

The Markov chain Monte Carlo simulations for 
Models 2 and 4 were repeated 100 times so as to 
allow enough time for the respective credible inter-
vals to obtain the values used to simulate the data. 
From the results of these replications, we note that 
the credible intervals for the social transmission pa-
rameter for Model 4 were observed to be narrower 
than those for Model 2. In addition, while the cred-
ible intervals for the social transmission parameter 
for Model 4 always contained the value used to 
generate the data, the credible intervals for Model 2 
were not found to contain the parameter value that 
was used to generate the data. The sole difference 
between Models 2 and 4 is the inclusion of random 
effects in Model 4, which thus underlies Model 4’s 
superior performance.

Model discrimination

Model discrimination was performed for three dif-
ferent model comparisons. The posterior model 
probabilities obtained are shown in Table 5.3. When 
all four models are considered simultaneously 
(Comparison 3), there is far more support for Model 
4 (the correct model, used to simulate the data) than 
for any of the other models (i.e. Model 4 was the best 
model in 94% of the simulations). In addition, when 
only Models 1 and 2 are considered (Comparison 1; 
i.e. no random effects) or only Models 3 and 4 are 

Table 5.3 Posterior model probabilities obtained from the 
application of the reversible jump Markov Chain Monte Carlo 
algorithm.

Models/
comparison

Comparison 
1(Models 1 
and 2)

Comparison 
2(Models 3 
and 4)

Comparison 
3(Models 1, 
2, 3, and 4)

1 0.11 – 0.0005

2 0.89 – 0.0032

3 – 0.05 0.0550

4 – 0.95 0.9420
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random effects that can be generated by individual 
differences in ability among datasets that repeat-
edly test the same group or groups. The application 
of this approach to a simulated dataset clearly il-
lustrates its merits, which we discuss in this section. 
The incorporation of random effects to account for 
heterogeneity in the baseline rate of asocial learning 
in Model 4 yielded a more realistic estimate (0.61) 
for the social effect on learning (recall that the value 
of the unscaled social transmission parameter used 
to generate the data was 0.6). Conversely, when ran-
dom effect parameters were left out of the model, 
the social effect was so seriously underestimated 
that it would have been falsely regarded as negli-
gible. Importantly, we note that the posterior mean 
(and standard deviation) for the variance of the 
random effects is 9.79 (2.96), reflecting substantial 
variation between the rates at which the individuals 
learn asocially. This is illustrated clearly in Figure, 
where individuals Joe and May have relatively high 
baseline rates while Ned and Ted have much lower 
rates.

The model discrimination exercise indicated that 
there was decisive posterior support for the random 
effect parameters, since Model 4 received the high-
est posterior support, and the Bayes factor in favour 
of random effects is greater than 100. Of course, to 
a large extent this is an artefact of the dataset de-
ployed, and different datasets would give greater or 
lesser support for the models with random effects. 
However, the result illustrates that at least in some 
cases it will be necessary to control for random ef-
fects and that the Bayesian network-based diffusion 
analysis is capable of doing this effectively. The 
exercise also illustrates how a failure to control for 
random effects can lead to inaccurate estimates for 
other parameters of interest—most obviously, the 
magnitude of the social effect.

We note that the median posterior parameter esti-
mate obtained for the social transmission and base-
line rate parameters in the model of choice, Model 
4, are not precisely equal to the point values used 
to simulate the dataset. For the social transmission 
parameter, the 95% credible interval does contain 
the value used for simulation, and the median is 
extremely close. However, this was not the case for 
the baseline rate parameter. The 95% credible inter-
vals for the baseline rate parameter did not contain 

the value used to simulate the data. The differences 
between the point values can be attributed to corre-
lations between model parameters in the joint pos-
terior distribution.

This is apparent with the baseline rate param-
eter, since it appears in the model as a product with 
the random effect parameter (i.e. ε exp( )i0λ ). This 
means that a range of different combinations of 0λ  
and εexp( )i , for any given i, can explain the data 
approximately equally well. For instance, a rela-
tively low value of 0λ and a relatively high value 
of εexp( )i  would explain the data roughly as well 
as a relatively high value of 0λ and a relatively low 
value of εexp( )i . This is what a correlation between 
two parameters in the posterior distribution is tell-
ing us.

An alternative formulation for which the corre-
lations between the baseline rate and the random 
effect parameters are avoided is to estimate individ-
ual baseline rates of asocial learning, i0λ , as random 
effects, which might be appropriate to research-
ers who wish to ascertain the asocial performance 
of particular animals. Whether such alternative 
formulations are warranted depends on the goals 
of the researcher. In principle, researchers could 
make this judgement given the nature of the data. 
However, we suspect that for most applications of 
network-based diffusion analysis, the primary ob-
jective is accurate estimation of s’, with 0λ  treated 
as a nuisance parameter, and hence the formulation 
presented here suffices. We have found that alter-
native formulations of random effects for asocial 
parameters do not generally affect estimation of s’.

Researchers unfamiliar with use of Bayesian 
methods might be put off using a Bayesian network-
based diffusion analysis by the need to specify a 
prior distribution, quantifying our state of knowl-
edge about the parameters before receiving the data. 
Often, they will consider themselves to have no 
solid basis on which to make judgements about the 
rate of asocial learning, and rate of social transmis-
sion prior to collecting data. Here we will discuss 
the circumstance under which such choices matter, 
and, where they do, how a prior distribution might 
be derived.

In some analyses, parameter estimation might be 
the key focus—probably focussing on estimating 
s’ with 95% credible intervals—with no need for 
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model discrimination. In such cases, one can specify 
a vague prior for parameters, with a large variance 
reflecting little prior knowledge, without worry-
ing about exactly how large the variance has to be, 
or exactly what form the prior distribution should 
take. So long as the prior is fairly flat in the area that 
the 95% credible intervals fall, our results will not 
be greatly affected (Jaynes 2003). A pragmatic ap-
proach might be to choose a uniform distribution 
for s’ from 0 to a large value far higher than s’ could 
plausible take (see below), and likewise for λ0.

In contrast, if model discrimination is the aim 
(e.g. when trying to decide which of a number of 
social networks best explains a diffusion), then the 
choice of priors is important, and the prior should 
reflect our state of knowledge. This is because the 
evidence for a given model depends not only on the 
likelihood of the data but also on how concentrated 
the priors are in the area in which the model pa-
rameters are plausibly located. Consequently, the 
addition of a parameter for which we have a little 
prior knowledge will penalize a model more than 
the addition of a parameter for which we have a lot 
of prior knowledge (see Jaynes 2003 for an expla-
nation of why this is). For this reason, it is impor-
tant that the prior distribution reflects our state of 
knowledge, for model discrimination.

A social learning researcher might protest that we 
do not know how strong social transmission might 
be (or indeed how rapid asocial learning might 
be) before conducting the diffusion experiment. 
However, we argue that researchers do have prior 
knowledge about such things, and this can be ap-
propriately incorporated into the analysis. To illus-
trate this, imagine the researchers are conducting a 
diffusion experiment on swans: no diffusion experi-
ments have ever been conducted on swans, so, on 
the face of it, they do not know anything about how 
fast swans might solve the task, whether it is by aso-
cial learning or social transmission. However, there 
are possibilities that researchers would consider 
to be, a priori, impossible. Imagine they got the 
results of an network-based diffusion analysis on 
swans which estimated s’ = 1000 per unit connec-
tion per second; this would mean that individuals 
with a single unit of connection to informed swans 
would, on average, solve the task in 0.001 seconds. 
Unless the network was quantified on a very small 

scale, no researcher would believe this result—
they would probably assume something had gone 
wrong in the analysis (e.g. the time units were days, 
not seconds).

Such reasoning suggests that researchers do have 
prior knowledge about how fast social transmission 
could occur if and when it does occur. If they input 
a prior that allows a large range of values that are a 
priori implausible, they are penalizing too heavily 
against models including social transmission, and 
the Bayes Factors obtained will not reflect the state 
of our knowledge. Our suggestion for deriving a 
suitable prior for s’ is to start by setting an upper 
limit, Smax, on how fast social transmission could 
plausibly occur, when all an individual’s associates 
are informed (this can be estimated as Smax = 1/Tmin, 
where Tmin is the minimum plausible average time 
it would take individuals to solve a task under such 
circumstances). Since s’ is the rate of social trans-
mission per unit connection, take the average total 
network connection over all individuals, k. We then 
set the upper limit as s’max = Smax/k. One could then 
specify a uniform prior s’ ~ U(0, s’max), which would 
state that we consider all values of s’ within this 
range to be equally plausible.

This is likely to be a conservative approach, since 
values at the top end of the range are likely to be, 
in reality, less plausible than lower values, mean-
ing models with s’ included will be penalized more 
heavily than truly reflects our state of knowledge. 
Consequently, we suggest that researchers also 
check the sensitivity of their findings to different 
priors—perhaps altering the value of Smax, and 
also considering vague priors of different forms. 
For this purpose, we would suggest that one 
would need to go through a similar exercise to set 
a lower limit on s’ to obtain s’min where s

s
k

 min
' min= ,

s  
T

1

max
min = , and Tmax  represents the maximum pos-

sible time it is believed to take to solve the task at 
hand. This would result in a prior specification of 

Us s slog ~  log , logmin max( )( ) ( )( )′ ′ ′ . Priors can be cho-
sen in a similar way for λ0, by quantifying Max0λ as 
the highest plausible rate of asocial learning and set-
ting λ0 ~U (0, Max0λ ). However, this specification is 
less important than the specification of the prior for 
s’, if the emphasis is on whether social transmission 
is occurring, since the same prior can be used for 

0λ  in models with and without social transmission.

9780199679058-Krause.indb   51 26/11/14   4:54 PM



52   A N I M A L  S O C I A L  N E T W O R K S

R code is available on the Laland lab website to 
demonstrate the Bayesian analysis of diffusion data 
in a simple form, including just the social effect and 
baseline rate parameters, and also when random 
effects are incorporated in the modelling process. 
The code provided is for demonstrative purposes. 
Development of a more comprehensive package, 
which can handle more complicated datasets, is 
currently underway.
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