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A B S T R A C T

Observational learning is a form of social learning in which a demonstrator performs a target task in the
company of an observer, who may as a consequence learn something about it. In this study, we approach social
learning in terms of the dynamics of coordination rather than the more common perspective of transmission of
information. We hypothesised that observers must continuously adjust their visual attention relative to the
demonstrator's time-evolving behaviour to benefit from it. We eye-tracked observers repeatedly watching videos
showing a demonstrator solving one of three manipulative puzzles before attempting at the task. The presence of
the demonstrator's face and the availability of his verbal instruction in the videos were manipulated. We then
used recurrence quantification analysis to measure the dynamics of coordination between the overt attention of
the observers and the demonstrator's manipulative actions. Bayesian hierarchical logistic regression was applied
to examine (1) whether the observers' performance was predicted by such indexes of coordination, (2) how
performance changed as they accumulated experience, and (3) if the availability of speech and intentional gaze
of the demonstrator mediated it. Results showed that learners better able to coordinate their eye movements
with the manipulative actions of the demonstrator had an increasingly higher probability of success in solving
the task. The availability of speech was beneficial to learning, whereas the presence of the demonstrator's face
was not. We argue that focusing on the dynamics of coordination between individuals may greatly improve
understanding of the cognitive processes underlying social learning.

1. Introduction

Throughout their lives, humans and nonhuman animals learn to
perceive their surroundings and engage more or less skilfully with the
different tasks they encounter. Within the behavioural sciences, a
common distinction is made between individual (or asocial) learning
and social learning (Galef, 1988; Heyes, 1994; Hoppitt & Laland, 2013;
Whiten & Ham, 1992; Whiten, Horner, Litchfield, & Marshall-Pescini,
2004). The latter is defined as “learning that is facilitated by observa-
tion of, or interaction with, another individual (or its products)” and
encompasses a wide range of processes (Hoppitt & Laland, 2013).

Here we focus on observational learning (a.k.a. ‘production imita-
tion’), which occurs when an observer acquires an action, or action
sequence, after watching another individual perform it (Ashford,
Bennett, & Davids, 2006; Carcea & Froemke, 2019; see Hoppitt &
Laland, 2013, p. 4 and p. 64 for precise definitions). This type of

learning occurs in formal settings such as in schooling, sports training,
and apprenticeship, and it usually involves a ‘demonstrator’ (or ‘model’)
and a ‘learner’ (or ‘observer’). The demonstrator shows the learner the
correct or normative way of performing the target task, either in-
tentionally or unintentionally. The learner observes the demonstration
and attempts the task. In this context, the dynamics of joint attention
that underlies the execution and observation of the task may facilitate
the development of the skills required to complete it effectively, as we
argue below.

Our perspective is supported by the influential work of Tomasello
and collaborators (Carpenter, Nagell, & Tomasello, 1998; Carpenter &
Tomasello, 1995; Tomasello, 1999, 2009; Tomasello, Kruger, & Ratner,
1993), who maintain that joint attention is critical to human social
learning and social cognition. These authors suggest that both teaching
and collaborative learning are critically reliant on human's ability to
alternate perspective taking and to attend jointly to objects and events
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with others. Joint attention is thought to underlie the unique aspects of
our species' social cognition skills, differentiating humans from other
apes (Carpenter & Tomasello, 1995; Tomasello, 2009), scaffolding
language learning and cognitive development (Carpenter et al., 1998;
Degotardi, 2017; Tomasello, 2003, 2009), and being a key deficit of
individuals with autism spectrum disorders (Schertz, Odom, Baggett, &
Sideris, 2013).

Observational learning has been extensively investigated in the
context of motor control to understand, for example, how humans learn
novel sequences of existing movement patterns (Bird & Heyes, 2005;
Nissen & Bullemer, 1987), rhythmic patterns (Vogt, 1995), interlimb or
whole-body coordination patterns (Casile & Giese, 2006; Hodges,
Williams, Hayes, & Breslin, 2007), and how to adjust limb movements
in novel environments (Mattar & Gribble, 2005). Given its intimate link
with learning action sequences, observational learning has received
considerable attention in the sport sciences; for example, to assess the
effectiveness of demonstrations in facilitating skill acquisition (Horn,
Williams, Hayes, Hodges, & Scott, 2007; Horn, Williams, Scott, &
Hodges, 2005; Williams & Hodges, 2005).

Some of these studies have also examined the role played by overt
attention during observational learning. (e.g., Breslin, Hodges, &
Williams, 2009; D'Innocenzo, Gonzalez, Williams, & Bishop, 2016; Horn
et al., 2005). For example, Breslin et al. (2009) examined how attending
to different parts of the body of a demonstrator performing a novel
cricket bowling action mediates how the action is acquired by the
learners. Participants in this study underwent three practice blocks in
which they first watched a demonstration video – which consisted of a
point-light display film showing either the demonstrator's bowling arm,
or his wrists, or his full body – five times and then had ten trials to
replicate the action. On the following day, after a retention test, par-
ticipants practiced another three blocks now watching the full-body
point-light display film; and an additional retention test was performed
on the third day. Measures of intralimb and interlimb coordination
were used to compare the performance of learners with the demon-
strator, and eye-tracking was used to examine learners' visual attention
to the demonstration videos. When watching the full-body film, parti-
cipants focused more on the bowling arm than on other body parts (e.g.,
the legs) suggesting that learners prioritize the end effector of the action
during observational learning. Most importantly, participants who saw
the demonstrator's bowling arm on both days acquired an intralimb
coordination profile more similar to the demonstrator compared to
participants who saw his bowling arm only on day 2. Despite showing a
very interesting relation between overt attention and task performance,
this study did not explicitly assess it as the measures of overt attention
used were aggregated over the entire trial (e.g., proportion of time
spent on each area of interest), and thus they were unable to capture the
dynamics of overt attention on a moment-by-moment basis. This aspect
is at heart of the current study, which will examine precisely how
learners must dynamically adapt their visual attention in order to stay
‘in touch’ (i.e. informationally coupled through active perception) with
the relevant aspects of the task as they move in space and change over
time; and how this attentional coordination is critically related to their
task success.

To the best of our knowledge, only few studies have formally ex-
amined the association between overt attention and learning outcome,
and these do not come from the field of social learning. Eye-movement
coordination between speakers and listeners was, for example, found to
be positively associated with discourse comprehension (Richardson &
Dale, 2005), and emerged as a positive predictor of task success only
when interlocutors could engage in a bi-directional conversation (Coco,
Dale, & Keller, 2018). Other eye-movement studies have attempted to
direct the learners' attention to specific aspects of the task by manip-
ulating the saliency of visual stimuli and examined its effect on
learning. Grant and Spivey (2003), for example, found that more lear-
ners arrived at the correct solution of a diagram-based insight task
when presented with a diagram which highlighted a critical area,

compared to a static diagram or a diagram which highlighted a non-
critical area.

However, intentionally directing the observer's attention towards
task-relevant aspects does not always facilitate learning (see van Gog,
Jarodzka, Scheiter, Gerjets, & Paas, 2009, for counterevidence), which
indicates that the relation between attentional coordination and per-
formance may strongly depend on the demands of the task at hand and
the specific context of demonstrator-observer interaction. Even if re-
searchers in the field of social learning recognize the importance of
joint attention, it is yet to be rigorously demonstrated that the time-
evolving dynamics of coordination between demonstrators and learners
are indeed predictive of their learning pattern.

This approach is in line with the growing body of literature in the
cognitive sciences arguing that behaviour and human interaction can be
framed as multi-scale, self-organizing and dynamical phenomena
(Chemero, 2009; Dale, Fusaroli, Duran, & Richardson, 2013; De Jaegher
& Di Paolo, 2007; Haken, Kelso, & Bunz, 1985; Kelso, 1995, 2016;
Schoner & Kelso, 1988; Schoner, Zanone, & Kelso, 1992). Important
advances in the study of multi-modal coordination have, in fact, been
possible through the application of non-linear methods of analysis such
as recurrence quantification analysis (RQA) which can be used to
quantify the temporal dynamics of two or more streams of data un-
derlying human interaction, such as manipulative actions and eye-
movement (Coco et al., 2017; Coco & Dale, 2014; Fusaroli, Konvalinka,
& Wallot, 2014; Richardson, Dale, & Marsh, 2014; Wallot, Mitkidis,
McGraw, & Roepstorff, 2016).

In the current study, we take inspiration from dynamical systems
theory and borrow some of their methodological tools to examine social
learning. We combined eye-tracking, RQA, and Bayesian hierarchical
logistic regression analysis to investigate how learning rate in a novel
manipulative task may depend on the patterns of attentional co-
ordination that arise when learners watch a demonstrator performing
task-specific actions. Learners were eye-tracked as they watched videos
of a demonstrator showing them how to solve a manipulative con-
struction puzzle (our target task, see Fig. 1) and then attempted to solve
the same puzzle on their own. Rather than running a single trial, we
asked learners to watch the demonstration video and attempt the cor-
responding puzzle multiple times, so that we might monitor changes in
their performance as a function of their accumulated experience.

We hypothesised that learners must adjust their overt attention
dynamically and synchronously to the demonstrator's unfolding beha-
viour to benefit from it maximally. Specifically, we expected that if
learners systematically time-locked their overt attention to the pieces
being manipulated by the demonstrator, they might detect relevant
aspects of the demonstration, such as the actions required to orderly
and correctly assemble the pieces into the final structure. Thus, we
predicted that higher attentional coordination of the learners to the
manipulative actions of the demonstrator would result into increasingly
better learning outcomes.

We acknowledge that the use of pre-recorded demonstrations imply
that learners may dynamically adapt their allocation of overt attention
to the manipulative actions displayed in the videos, but the demon-
strator would always perform the same sequence of actions, and so,
there is no dynamical interaction between the demonstrator and the
learner. Hence, our use of the expressions `attentional coordination` or
`synchronisation` must be interpreted as unidirectional (i.e., only the
learner can dynamically adapt to the demonstrator).

Another important aspect of an intentional demonstration is gaze
following, which is considered central to establishing and sustaining
joint attention (e.g., Carpenter et al., 1998; Tomasello, Carpenter, Call,
Behne, & Moll, 2005). However, it is also known that people shift their
overt attention to objects just before reaching them and tend to look at
them until the movement is completed (Johansson, Westling,
Backstrom, & Flanagan, 2001; Land & Hayhoe, 2001). Thus, in the
context of object manipulation, the objects being looked at may coin-
cide with the objects being manipulated. This suggests that, during a
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manipulative task, joint attention could be achieved by either following
the partner's gaze (the conventional gaze-following route) or the part-
ner's hands (hand-eye coordination route).

Yu and Smith (2013), for example, provided eye-tracking evidence
for this alternative route to joint attention by examining the attentional
coordination of one-year-old children and their parents while playing
together with toys. Given that seeing the partner's face might help di-
rect one's own visual attention, and given that learning through (live or
recorded) demonstration requires coordinating one's visual attention
with the demonstrator, we examined whether the presence of the in-
tentional gaze of the demonstrator helped (or not) to direct the atten-
tional coordination of the learners and, especially, whether it improved

(or not) their performance in the construction puzzle task. If gaze fol-
lowing is indeed required to establish joint attention, then we should
expect that observers who could see the demonstrator's face (and thus
could follow his gaze throughout the demonstration) would learn faster
than those that could not (see Fig. S1 in the electronic supplementary
material for an example of the gaze manipulation and refer to de-
monstration videos available in the Open Science Framework page at
https://osf.io/jhtqb/). Conversely, if gaze following is not required for
joint attention, then we should expect that observers seeing the de-
monstrator's face would not benefit from it compared to those seeing his
face blurred.

The final aspect of an intentional demonstration on which our study

Fig. 1. The experimental setup. A: Examples of the starting frames of the demonstration videos for the three puzzle tasks (star, egg, and barrel) in which the
demonstrator has his face blurred. The insets show the corresponding solved puzzles. B: Plan diagram and photo of the workspace. The learner is at the eye-tracking
desk watching the demonstration video and to her left is the task desk with the pieces of a barrel puzzle as well as an assembled model.
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focuses is that learners may or may not receive verbal instructions from
the demonstrator. Psycholinguistics research has provided compelling
evidence that sentence processing is tightly linked with other cognitive
modalities such as visual attention: speakers tend to look at those ob-
jects that correspond with the words being spoken (Coco & Keller,
2012, 2015; Griffin & Bock, 2000; Meyer, Sleiderink, & Levelt, 1998),
and listeners also tend to look at those objects that correspond with the
words being heard (Allopenna, Magnuson, & Tanenhaus, 1998; Coco,
Keller, & Malcolm, 2016; Knoeferle & Crocker, 2006; Richardson &
Dale, 2005). Moreover, systematic links between verbal and non-verbal
(e.g., eye movement) behaviour extends to communicative dialogue,
where speakers and listeners dynamically adapt their actions and vo-
calizations to the conversational partner as they go along in the dia-
logue (Clark & Krych, 2004; Fogel, 1993), and may even synchronize
their eye-movement behaviour over time (Richardson, Dale, &
Kirkham, 2007).

This literature clearly shows that listening to verbal communication
can have a direct impact on one's visual attention, as well as on task
performance. We therefore examined the impact of the demonstrator's
verbal instruction on the learners' attentional coordination and on their
performance at assembling the puzzle. Given the suggested role of
speech in guiding the attention of listeners (e.g., Ingold, 2001;
Tomasello, 2003), we predicted that learners who could listen to the
demonstrator would learn faster than those ones that could not.

2. Methods

2.1. Design

We used a mixed factorial design with the type of demonstration
video manipulated as a between-participant variable and with 3 re-
peated measures of task per participant and 5 repeated measures of
iteration per task. Specifically, we crossed the visibility of the demon-
strator's face (face visible or face blurred) with the availability of the
demonstrator's verbal instructions (with audio or no audio), to produce
four experimental conditions: face blurred and no audio
(noFACE_noAUDIO); face visible and no audio (FACE_noAUDIO); face
blurred with audio (noFACE_AUDIO); and face visible with audio
(FACE_AUDIO). In addition, to discriminate between ‘social’ and ‘in-
dividual’ learning we ran two control conditions in which learners only
saw a still image of the demonstrator and the puzzle pieces and could
therefore not benefit from seeing his manipulative actions. In one
condition, the still image was accompanied by the audio of the corre-
sponding demonstration (noVIDEO_AUDIO) and hence learners could
only benefit from the demonstrator's verbal instructions. In the other
condition, the still image was shown without the audio
(noVIDEO_noAUDIO), thus learners could not benefit in any way from
the behaviour of the demonstrator. We report these two control con-
ditions in the electronic supplementary material, as they were not
central to the main arguments of our study.

Participants were randomly allocated to one of the six conditions
and performed all three versions of the task (star, egg, and barrel). The
order of the puzzles was counterbalanced between participants. At the
start of each puzzle, the participants were asked to complete the puzzle
without any instruction to obtain a baseline measure. They repeated the
puzzle another five times, but each time they first watched the de-
monstration video before attempting the puzzle. This iterative proce-
dure gives us repeated measures of performance (baseline plus 5),
which could be used to construct a learning curve rather than a one-off
success/failure outcome (see below for further details about how the
data was modelled).

2.2. Participants

Data for this study was collected at the Joint Eyetracking lab at the
University of Edinburgh. Fifty-three participants (32 female; age:

range = [18, 50], median = 21, SD = 5.4) were recruited using the
Experimenter Volunteer Panel of the University of Edinburgh. Forty
participants did the four experimental conditions explained above and
reported in what follows. Thirteen participants instead did the control
conditions and, as mentioned, are reported only in the electronic sup-
plementary material. All participants gave informed consent, had
normal or corrected-to-normal vision, indicated no known learning
disability, and were paid £7 as compensation for their time.

In addition, an experienced schoolteacher in Edinburgh (male,
33 years of age) was recruited to perform the role of the demonstrator
in the video recordings used as stimuli and received £20 for his time.
Prior to data collection, the study was approved by the University of St
Andrews Teaching and Research Ethics Committee and by the
Psychology Research Ethics Committee of the University of Edinburgh,
in accordance with the British Psychological Society guidelines on
ethics.

2.3. Material

The manipulative task was to solve construction puzzles, that is, to
assemble sets of wooden pieces to form pre-defined structures. Each
participant engaged with three puzzles (star, egg, and barrel, see
Fig. 1), which differed in the number of pieces (star: six pieces; egg:
eight pieces; barrel: twelve pieces) and in the steps required to solve
them. In the videos, the demonstrator shows and verbally describes the
steps needed to assemble the different structures. The experimenter and
the demonstrator scripted the verbal instructions beforehand so that the
language used was standardised across the three puzzles (transcriptions
of the verbal instructions are available in Section 6 of the electronic
supplementary material, and examples of the demonstration videos are
available in the Open Science Framework page of this project).

A tripod-mounted camera positioned at eye level in front of the
demonstrator was used to record the videos. The demonstrator was
instructed to act naturally and to look at the camera from time to time,
as if he were teaching an imaginary learner in front of him. The videos
were captured in the portrait orientation and a lapel microphone was
used to record the demonstrator's speech. Because the puzzles differed
in the number of pieces, the demonstrations differed in duration (star:
40s, egg: 54 s, barrel: 78 s). We edited the videos to obtain the versions
corresponding to the experimental conditions described above (i.e.,
face visible or face blurred; with audio or without audio) using the
Wondershare Filmora software.

2.4. Experimental setup

Participants watched the videos while being eye-tracked on one
desk and assembled the puzzles on another desk (see Fig. 1B for a vi-
sualization of the workspace). They could easily move between the two
desks by rotating 90° on the chair. Videos were displayed on a 21″
monitor in portrait orientation with a resolution of 1050 × 1680 pixels
at a refresh rate of 100 Hz and a frame rate of 25 Hz. The audio was
played on standard desktop speakers.

Eye-movements were tracked using a SR Research EyeLink 1000
with Desktop Mount at a sampling rate of 1000 Hz. We only tracked the
dominant eye, which was assessed using a parallax test. A forehead-
and-chin rest was used to stabilize the participant's head movement.
The monitor covered 35° of visual angle vertically and 22° horizontally,
and the distance between the headrest and the top of the monitor was
74 cm. Nine-point calibration routines were performed before watching
the video for the first time for each puzzle, and a drift check was per-
formed before each subsequent attempt. Experiment Builder (SR
Research) was used to implement the experiment. All sessions were also
video recorded using two tripod-mounted cameras, but these images
were used only to double check the validity of the measures of success
manually coded by the experimenter during each session.
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2.5. Procedure

The experimenter told the participants that they would alternate
between watching the demonstration videos and attempting the task,
and that this procedure would be repeated five times for each of the
three puzzles, yielding a total of 15 trials per participant. At the start of
each puzzle, the participant was shown all pieces of the puzzle and a
correctly finished model and was asked whether she or he had seen it
before. If the participant knew the puzzle, the experimenter would skip
it and move on to the next (only one participant was familiar with one
puzzle). Then, the experimenter asked the participant to produce a copy
of the finished model to assess her or his initial ability to solve the
puzzle (i.e., before watching the demonstration for the first time) and
obtain a baseline score. Participants had a fixed time interval to solve
the task (star: 90 s, egg: 90 s, barrel: 120 s) corresponding to twice the
time required by the demonstrator to solve it at a comfortable pace.
During this period, participants could manipulate their own pieces and
visually inspect the finished model but not touch it. The experimenter
kept track of the time and interrupted the learner after the time-out,
prompting her or him to turn to the eye-tracking desk. After the cali-
bration and validation procedure, the participant watched the demon-
stration video corresponding to one, out of the four, experimental
conditions while being eye-tracked. During this period, the experi-
menter disassembled the puzzle and re-arranged the pieces on the task
desk to prepare for the participant's next attempt. After watching the
video for the first time, the participant turned to the task desk and had
another attempt at solving the puzzle, thus yielding the first perfor-
mance measure after the baseline. The participant then turned back to
the eye-tracking desk and, after a drift check, watched the demon-
stration video a second time before the next attempt. This sequence of
steps (baseline test plus five iterations of watching the demonstration
and attempting the task) was repeated for each of the three puzzles.

3. Analysis

3.1. Data processing

3.1.1. Demonstrator's manipulation data
We coded the demonstrator's manipulative actions from the de-

monstration videos into categorical time series at a sample rate of one
observation every 25 milliseconds using the free software Solomon
version beta 17.03.22 (Péter, 2016). Solving the puzzle requires joining
pieces together, thus producing compounds (i.e., the partially-solved
puzzle) along the way. In each 25 ms temporal window, we used unique
categorical labels to code the individual pieces, the compound being
manipulated, or to indicate that the demonstrator was not holding any
piece. When the demonstrator had a compound in one hand and a
piece-to-be-added in the other hand, we used the label for the new piece
and, after it was incorporated, the label for the newly-formed com-
pound (see Fig. 2A for an illustration of the resulting time series).

3.1.2. Learner's eye-movement data
Fixations and saccades events were extracted from the raw gaze

data using the SR Research Data Viewer software, which performs
saccade detection based on velocity and acceleration thresholds of
30°s−1 and 9500°s−2, respectively. The eye-movement coordinates
were mapped against dynamic Areas Of Interest (AOI), which were
defined for each demonstration video using the same labels for pieces
and compounds described in the previous paragraph and a label for
‘other’ to indicate when the participant was looking anywhere else on
the screen. We used a customized algorithm written in the R pro-
gramming language (R Core Team, 2016) to aggregate the eye-move-
ment data into windows of 25 ms and assign the label of the AOI that
was fixated most of the time within such interval. We therefore ob-
tained categorical time series indicating the sequence of objects fixated
by the observers (scan-patterns) in each trial, with length and labels

matching the categorical time series indicating the demonstrator's
manipulative actions. To avoid very small differences in length that
occurred during eye-tracking data collection among participants (star:
SD = 6 ms, range [1573 ms, 1643 ms]; egg: SD = 13 ms, range
[2000 ms, 2159 ms]; barrel: SD = 4 ms, range [3078, 3114]), we
normalized the length of the scan-patterns and manipulative actions in
each puzzle to the same number of bins (star: 1500 bins, egg: 2000 bins,
barrel: 3000 bins).

3.1.3. Learner's performance data
At the end of each trial, the experimenter coded the learners' per-

formance as either a success (i.e. the puzzle was assembled correctly
before time-out) or a fail (i.e. the puzzle was not assembled before the
time-out), and validated this data by watching the video recordings of
the sessions.

3.1.4. Data exclusion
The initial dataset included 600 trials (40 participants × 3 puz-

zles × 5 iterations). From these, 5 trials were excluded due to one
participant knowing the puzzle, 3 due to one participant inadvertently
moving away from the eye tracker, 2 due to the participant accidentally
moving the desk during data collection (perturbing the eye tracking
system), and 124 due to the eye tracking data not being acquired
properly. The final dataset comprised of 36 participants and 466 trials
(condition noFACE_noAUDIO: 10 participants and 131 trials;
FACE_noAUDIO: 8 participants and 109 trials; noFACE_AUDIO: 8 par-
ticipants and 100 trials; and FACE_AUDIO: 10 participants and 126
trials).

3.2. Recurrence quantification analysis (RQA)

We examined the coordination dynamics between the scan-patterns
of the learners (i.e. the sequence of pieces learners looked at while
watching the demonstration videos) and the manipulative actions of the
demonstrator (i.e. the sequence of pieces the demonstrator manipulated
in the demonstration videos) using Recurrence Quantification Analysis
or RQA (Marwan & Kurths, 2002; Marwan, Romano, Thiel, & Kurths,
2007; Shockley, Butwill, Zbilut, & Webber, 2002; Webber & Zbilut,
2005; Zbilut, Giuliani, & Webber, 1998). In particular, we produced
cross-recurrence plots (CRP), from which we computed joint-recurrence
plots (JRP) across the five trials of each puzzle to better capture the
iterative process of the task. We used the crqa package (version 1.0.9)
developed by Coco and Dale (2014) in the R software (R Core Team,
2016) to run our analyses using parameter values appropriate for ca-
tegorical data: delay = 1, embedding = 1, and radius = 0.001.

In Fig. 2B and Fig. 2C, we illustrate how CRPs and JRPs were
computed for a participant attempting the star puzzle across five
iterations after the baseline test. For each trial, we had two time series:
one for the manipulative actions of the demonstrator and the other for
the scan-pattern of the learner watching the demonstration. Note that
the time series for the demonstrator is the same across all five trials
(because the demonstration video is the same) but the time series of the
learner is different in each trial (because learners can move their eyes
differently each time).

We produced a CRP for each trial by pairing the demonstrator
(horizontal axis) with the learner (vertical axis). Conceptually, when
the labels of the two time series match in some combination of time-
points [xi, yi] (i.e., if the puzzle piece being manipulated by the de-
monstrator at time xi is the one being looked at by the learner at time
yi), this returns a cross-recurrence point for that entry. When the labels
do not match, there is no cross recurrence (see Dale, Warlaumont, &
Richardson, 2011, for an extensive explanation of RQA applied to ca-
tegorical time series).

We then obtained joint-recurrence plots (JRPs) by simply multi-
plying the CRP of each iteration with all previous iterations on the same
puzzle (see Fig. 2C). Conceptually, only if all CRPs multiplied have a
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value of 1 in some entry [xi, yi] (thus indicating cross-recurrence at that
delay in all CRPs), then the resulting JRP will also have a value of 1 in
that same entry; otherwise, the value will be zero. For the first iteration,
we just kept the corresponding CRP, as there is no previous iteration to
multiply it with. For iteration 2, we multiplied the two CRPs obtained
for iterations 1 and 2. For iteration 3, we multiplied the three CRPs
obtained for iterations 1, 2, and 3; and similarly for iterations 4 and 5.
Therefore, the resulting JRPs reflect the dynamics of coordination be-
tween demonstrator's action and observer's gaze that is consistently

found across the trials with each puzzle.
From each JRP, we computed three recurrence measures reported

below. The recurrence rate (RR), which is the proportion of cross-re-
currence points in the JRP, corresponds mathematically to the cross-
correlation sum (Kantz, 1994) and reflects the degree of shared activity
or coordination between the two time series. The determinism (DET),
which is the proportion of cross-recurrence points that form continuous
diagonal lines (longer than a predefined threshold) and reflects the
degree of synchronization between the two time series. The mean line

Fig. 2. A: A single time series of the demonstrator manipulating the pieces of the star puzzle and five time series of one of the learners watching the corresponding
video across the five iterations. The colours indicate either a single piece or the partially assembled puzzle being manipulated/looked at. The grey colour in the
demonstrator's time series represents the moments in which he was not manipulating any piece. B: Cross recurrence plots (CRP) of the demonstrator's manipulative
actions (horizontal axis) and the learner watching them (vertical axis). The line of synchrony, i.e., lag 0, is shown in black, and cross recurrence points are shown in
blue. C: Joint recurrence plots (JRP) produced from the CRPs shown in B. For each iteration, the JRP is produced by multiplying the CRP of that iteration with all
previous ones, which leaves in only the recurrence points that consistently occur across iterations. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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length (L), which is the average length of the diagonal lines (longer than
the threshold), reflects the average time in which the two time series
remain synchronized.

To compute DET and L it is necessary to define the threshold
parameter (mindiagline in the crqa package) because it indicates the
minimum length of the diagonal lines in the recurrence plots, i.e. it
defines the number of consecutive time-points needed to consider
whether the two time series (e.g., the demonstrator and the observer)
are in the same state (e.g., manipulating/attending to the same target).
In our study, we obtained this threshold empirically by: (1) examining a
range of possible threshold values, (2) plotting the resulting DET values
as a function of the different threshold values examined, (3) visually
inspecting these plots and (4) choosing the parameter value that
counters ceiling effects (i.e., that leads DET values to vary rather than
be concentrated at 100%). We obtained a minimum diagonal length
threshold value of 30 data-points, which corresponds to a period of
750 ms in the raw time series data. In other words, only synchronized
attention and manipulative action that was longer than 750 ms counted
towards the values of DET and L.

Additionally, we computed measures of recurrence across the ver-
tical line structures of the JRPs, the laminarity (LAM) and the trapping
time (TT), and obtained results largely corroborating those from the
diagonal lines (i.e., RR, DET and L) reported in the main text. These
additional analyses are explained and reported in Section 6 of the
electronic supplementary material.

3.3. Statistical analysis

RQA measures are descriptive in nature and, therefore, comparisons
among cases (e.g., conditions, participants, or appropriate baselines)
are required to draw inferences and examine specific predictions
(Marwan et al., 2007; Shockley et al., 2002). Thus, we examined the
relation between the learners' performance, the RQA measures of at-
tentional coordination, and the design variables using Bayesian hier-
archical logistic regression modelling and the framework of model
comparison (Gelman et al., 2014; McElreath, 2016). This allowed us to
adequately capture the complexity of our mixed design with repeated
measures while improving the estimation of the effects with relatively
small samples (e.g., Baldwin & Fellingham, 2013; Depaoli & van de
Schoot, 2017). Bayesian regression models were fit in the probabilistic
programming language STAN (B. Carpenter et al., 2017) using the
map2stan function, and compared using the compare function, both
from the rethinking package (McElreath, 2016) in the R software. We
used Markov Chain Monte Carlo (MCMC) simulation to obtain samples
from the posterior distribution of the unknown parameters for which
summary statistics were then computed (e.g., mean, credible intervals,
differences, or the proportion of positive values). For all models, we
used weakly informative priors (i.e., they were not completely flat but
had little influence on the estimated posterior distributions) to obtain a
wide range of sensible parameter values and yet avoid unreasonable
values (Gelman et al., 2014; McElreath, 2016). We used normal priors
with mean 0 and standard deviation of 10 for all non-constrained
parameters, and we used half-Cauchy priors with location 0 and shape 5
for the variance parameters.

Our core question is whether attentional coordination, oper-
ationalized through the independent variables RR, DET, and L, is pre-
dictive of learners' performance across trials. We first fitted to the
performance data our base model, a hierarchical logistic model (logit
link) predicting the probability of task success (Eq. (1)). The predictors
are the parameters modelling the experimental conditions, i.e. face
(indicating whether learners could see the demonstrator's face or if it
was blurred) and audio (indicating whether learners could listen to the
demonstrator's verbal instruction or not), iteration(i.e., the five trials with
each puzzle after the baseline test), and the interaction between condition
and iteration. Both face and audio were dummy coded and modelled as
between-participant fixed effects, whereas iteration was coded

numerically from 0 to 4 and modelled as a within-participant fixed
effect. The model also included indicators of the task (three levels: star,
barrel and egg) and participant (36 levels) as varying intercepts (also
called fully-crossed random effects). None of the participants solved any
of the tasks during the baseline test, therefore we did not include the
baseline score as a covariate. This base model captures how perfor-
mance varies across iterations (i.e. the steepness of the learning curves)
for the different experimental conditions and does not include any co-
ordination variable. More formally, the base model can be represented
as:

logit p b b face b audio b face

audio b b face b audio b face audio

iteration task participant

  

    



= + + +

+ + + +

+ 1 + 1

( )

( )

| |

0 1 2 3

4 5 6 7

(1)

We then fitted three additional models, each including one of the
coordination variables, which were z-scored (i.e. subtracted from the
mean and divided by the standard deviation), as a main (i.e. additive)
effect. These models can be represented as:

logit p base model b RR= +( ) _ 8 (2A)

logit p base model b DET= +( ) _ 8 (2B)

logit p base model b L= +( ) _ 8 (2C)

Lastly, we fitted three additional models including the interaction
between the experimental condition and the respective coordination
variable, thus allowing the effect of coordination (if there was any) to
vary across conditions. These models can be represented as:

logit p

base model b b face b audio b face audio

RR

   



= + + + +

( )

_ ( )8 9 10 11

(3A)

logit p

base model b b face b audio b face audio

DET

   



= + + + +

( )

_ ( )8 9 10 11

(3B)

logit p

base model b b face b audio b face audio

L

   



= + + + +

( )

_ ( )8 9 10 11

(3C)

For each coordination variable, we compared the base model and
the two additional models using the Widely Applicable Information
Criterion or WAIC (Gelman et al., 2014; McElreath, 2016) to examine
whether adding the coordination variable, either only as a main effect
or also in interaction with condition, improves model prediction ac-
curacy (the results of the model comparison are reported in Section 4 in
the electronic supplementary material). Lower values of WAIC indicate
better predictive accuracy than higher values. We also examined the
Akaike weights, which are rescaled values of WAIC where a total
weight of 1 is partitioned among the models under consideration, thus
indicating relative predictive accuracy among them (McElreath, 2016).
Including RR as a main effect improved model accuracy but its inter-
action with the experimental conditions did not improve it further.
Thus, we report model 2A. With respect to DET and L, including them
both as main effect and in interaction with the experimental conditions
improved the prediction accuracy over the base model. Thus, we report
models 3B and 3C.

We ran 2000 iterations (including 1000 warmup iterations) on three
chains for each model to ensure the robustness of the results, and report
estimates of the posterior distributions from a total of 3000 samples
after warmup. All STAN models converged and mixing of the in-
dependent MCMC chains was good, as indicated by inspecting the trace
plots and the number of effective sample sizes, and checking the Rhat
values of the parameters were no higher than 1.01. More details can be
found in the Open Science Framework page of this project (https://osf.
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Table 1
Estimated mean values and a 95% CI (unless a 90% CI is otherwise indicated) for the relative effects of iteration and coordination on the probability of task success
across conditions, computed for the three final models (one for each coordination variable, RR, DET, and L). Values indicating strong or weak evidence of an effect are
in bold to aid reading.

Coordination variable in the model Condition Effect of iteration Effect of coordination

Estimate Odds ratio Estimate Odds ratio

RR 1.11
[0.55, 1.63]

3.04
[1.74, 5.11]

0.91
[0.02, 1.78]

2.48
[1.02, 5.93]

0.81
[0.26, 1.37]

2.25
[1.30, 3.95]

0.91
[0.02, 1.78]

2.48
[1.02, 5.93]

2.00
[1.34, 2.67]

7.36
[3.83, 14.41]

0.91
[0.02, 1.78]

2.48
[1.02, 5.93]

1.95
[1.26, 2.65]

7.04
[3.52, 14.21]

0.91
[0.02, 1.78]

2.48
[1.02, 5.93]

DET 1.39
[0.70, 2.12]

4.03
[2,01, 8.30]

1.14
[0.01, 2.29]

3.13
[1.01, 9.91]

0.15
[−0.66, 0.91]

1.17
[0.52, 2.47]

−1.32
[−3.03, 0.45]

0.27
[0.05, 1.57]

2.70
[1.76, 3.68]

14.89
[5.80, 39.70]

2.14
[0.81, 3.68]

8.50
[2.25, 39.49]

1.44
[0.78, 2.15]

4.23
[2.18, 8.57]

−1.11
[−2.12, −0.17]

0.33
[0.12, 0.85]

L 1.73
[0.98, 2.55]

5.66
[2.67, 12.86]

2.05
[0.82, 3.28]

7.76
[2.28, 26.45]

0.01
[−0.77, 0.77]

1.01
[0.46, 2.16]

−1.82
90% CI [−3.42, −0.24]

0.16
90% CI [0.03, 0.79]

2.20
[1.37, 3.07]

9.07
[3.93, 21.63]

1.39
90% CI [0.02, 2.71]

4.00
90% CI [1.02, 14.96]

1.58
[0.97, 2.28]

4.87
[2.65, 9.79]

−0.41
[−1.11, 0.30]

0.66
[0.33, 1.35]

Fig. 3. Posterior predictions of the three final logistic models showing the probability of success (vertical axis) as a function of coordination (horizontal axis) as
captured by the RQA variables (RR, top row; DET, middle row; L, bottom row) across the four experimental conditions organized along the columns. Coordination
variables are standardised (z-scored) with −2 corresponding to 2 SD below the average (low coordination); 0 corresponding to the average value; and 2 corre-
sponding to 2 SD above the average (high coordination). These simulations are for an average task and average participant. The shaded black lines represent 100
simulations and the thick red lines represent the mean of all simulations within each plot. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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io/jhtqb/) where we provide a tutorial with the data and scripts to fit
and compare the models, as well as to interpret the final models by
computing the effects reported in Table 1 and replicating Figs. 3 and 4.
Unless otherwise indicated, we report the mean and 95% central
credible interval of the estimated parameters from the fitted models. A
strong evidence for an effect is when the 95% credible interval excludes
0, and weak evidence when the 95% credible interval includes 0 but the
90% does not.

In Section 2 of the electronic supplementary material we report two
more models, one examining the performance of the learners across the
experimental and the additional control conditions to provide further
evidence that learning is indeed facilitated by the demonstrator (in
other words, that this is a case of ‘social’ learning), and the other ex-
amining the proportion of fixation of the learners to the demonstrator
face vs. pieces to obtain clearer insights on the effect of intentional
gaze.

4. Results

Table 1 shows the parameter estimates and odds ratios of the three
fit logistic models chosen for interpretation (RR: model 2A; DET: model
3B; L: model 3C). Take, for example, the model including RR (i.e. the
first four rows in Table 1). We observe an odds ratio of 3.04 for the
effect of iteration in the noFACE_noAUDIO condition, which means the
odds of solving the puzzle increases 204% from one iteration to the
next. Similarly, we observe an odds ratio of 2.48 for the effect of RR
across all conditions (as there is no interaction between experimental
conditions and RR in the model), which means the odds of solving the
puzzle increases 148% for each unit increase in RR.

To help interpretation, we simulated data from the fitted models. To

do this, we must decide how to deal with the random effects. We could
simulate them too and doing this would increase the variation obtained
for the simulated outcome. However, this is unhelpful here as we are
not so much interested in the differences among tasks or among par-
ticipants, but rather in the systematic differences among the experi-
mental conditions. To focus on this aspect, we declared the random
effects as zero in the simulations, which corresponds to simulating for
an ‘average’ task and ‘average’ participant. Fig. 3 shows simulations
from the three final models to illustrates the effect of RR, DET, and L on
the probability of success across conditions, averaging over the effect of
iteration. Fig. 4, instead, focuses on model 2A (with RR) to illustrate
also the effect of iteration, and the corresponding figures for DET and L
can be found in the electronic supplementary material, Section 5.

We will interpret the results of each model in turn and start with
model 2A (i.e., RR). In line with our main prediction, we found strong
evidence that the coordination variable RR was positively associated
with the probability of success across all experimental conditions (see
effect of coordination on Table 1, Fig. 3 top row, and Fig. 4), which
indicates that attentional coordination is beneficial for observational
learning. Furthermore, the effect of iteration was positive in all con-
ditions, i.e., learners get progressively better at solving the puzzle.

In order to test whether the effect of iteration (i.e. learning rates)
differs across conditions, we examined the posterior distribution from
the fitted model (see details in the tutorial available in the Open Science
Framework page). For each sample of the posterior distribution, we
computed the difference between the effect of iteration estimated for
different conditions (say, FACE_AUDIO and FACE_noAUDIO). This
process generates a vector of estimated differences, which we sum-
marised by computing the mean and 95% credible intervals. This
summary statistics can be used as evidence (or lack thereof) for a

Fig. 4. Posterior predictions of the final logistic model with the coordination variable RR (model 2A) showing the probability of success (vertical axis) as a function of
iterations (horizontal axis) across conditions (columns), while holding RR at either 2 sd below the average (low RR, bottom row), at the average value (average RR,
middle row), or at 2 sd above the average (high RR, top row). These simulations are for an average task and average participant. The shaded black lines represent 100
simulations and the thick red lines represent the mean of all simulations within each plot. To see the effect of the different values of RR on performance, the reader
should compare the three plots within each column. To see the effect of seeing the demonstrator's face compared to face blurred, the reader should compare the plots
in column 1 with those in column 2, and the plots in column 3 with 4. To see the effect of listening to the demonstrator's speech compared to no audio, the reader
should compare the plots in column 1 with those in column 3, and the plots in column 2 with 4. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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systematic difference between conditions (Gelman et al., 2014). A
credible interval crossing zero suggests that the difference between the
estimates is not systematic (or, in a frequentist terminology, ‘not sig-
nificant’). If the credible interval instead does not cross the zero, this
suggests that the difference is indeed systematic or ‘significant’. More-
over, a positive difference means the first term of the difference has a
higher estimate, and a negative difference means the second term has a
higher estimate.

We found that the effect of iteration was larger in the condition
FACE_AUDIO than FACE_noAUDIO (difference between the estimates:
1.14 [0.4, 1.97]) and noFACE_AUDIO than noFACE_noAUDIO (differ-
ence between the estimates: 0.88 [0.15, 1.56]). This indicates that
learners who could listen to the demonstrator learned faster than those
that could not. We found no difference between the effect of iteration
for conditions FACE_AUDIO and noFACE_AUDIO: −0.04 [−0.8, 0.76];
and for conditions FACE_noAUDIO and noFACE_noAUDIO: −0.3
[−0.97, 0.39]). This result instead indicates that the performance of
learners did not benefit from seeing the demonstrator's face.

The estimated parameters just discussed reflect the relative effects
of iteration and coordination on the probability of successfully assem-
bling the puzzle. In order to visualize and interpret their joint con-
tribution, we simulated outcome values (probability of success) from
the fitted model. We fixed the parameter for RR at either the average
value, a low value (2 sd below the average), or a high value (2 sd above
the average) and generated 100 predictions for the probability of suc-
cess for an average task and average participant. The simulated out-
come, reported in Fig. 4, clearly shows how the performance of hy-
pothetical learners (vertical axes) increases as a function of iterations
(horizontal axes), varies for the different experimental conditions
(across columns) and is modulated by the degree of attentional co-
ordination (across rows). A comparison between the three plots within
each column in Fig. 4 shows that the learning curves are shifted up-
wards from low to high values of attentional coordination. This illus-
trates that learning is faster among learners who could coordinate their
overt attention with the demonstrator's manipulations more con-
sistently across trials (i.e. those with higher values of coordination
computed from the JRPs). In addition, the learning curves are steeper in
column 3 compared with those in column 1, and in column 4 compared
to column 2, which confirms that learning was faster for those in-
dividuals who could listen to the verbal instructions as compared to
those that could not. Finally, the learning curves in column 2 are not
systematically different from those in column 1, and those in column 4
are also not different from those in column 3, which confirms that
seeing the demonstrator's face did not seem to facilitate learning.

Model 3B (i.e., with coordination variable DET) and model 3C (with
L) show similar patterns, albeit with some interesting differences
(Table 1, Fig. 3 middle and bottom rows, see Figs. S5 and S6 in the
electronic supplementary material for the visualization of posterior
predictions). When the demonstrator's face was blurred, both DET and L
were positively associated with probability of success, which confirms
that learners who synchronized their eye-movement for longer with the
demonstrator's actions learned faster than those synchronising for
shorter period of time.

However, when the demonstrator's face was visible, the probability
of success was actually reduced for increasing values of DET and L. This
is illustrated in Fig. 3 (middle and bottom rows), which shows that the
probability of success declines for higher values of DET and L in the
conditions FACE_noAUDIO and FACE_AUDIO. Accordingly, Figs. S5 and
S6 in the electronic supplementary material show that the learning
curves shift downward as we move from low to high values of DET and
L. This suggests that seeing the demonstrator's face, compared to face
blurred, was detrimental to learning. This result is confirmed by the
strong evidence that iteration has a smaller effect on the probability of
success when comparing FACE_noAUDIO with noFACE_noAUDIO for
both DET and L (difference between the estimates for DET: −1.24
[−2.31, −0.22]; for L: −1.72 [−2.75, −0.63]); and comparing

FACE_AUDIO with noFACE_AUDIO for DET but not for L (difference
between the estimates for DET: −1.26 [−2.37, −0.14]; for L: −0.62
[−1.72, 0.39]).

We speculate that the presence of the demonstrator's face attracted
the attention of learners to it, distracting them from the actual ma-
nipulation task without providing any benefit. Additional analyses re-
ported in the electronic supplementary material (Section 3) corroborate
this suggestion by confirming that learners looked more at the de-
monstrator's face when it was visible compared to blurred (difference in
the mean estimates of the proportion of fixation time between
FACE_noAUDIO and noFACE_noAUDIO: 3.14% [0.5%, 10.3%]), be-
tween FACE_AUDIO and noFACE_AUDIO: 5.6% [0.8%, 17.9%]), and
even more so when they could listen to his speech (difference between
FACE_AUDIO and FACE_noAUDIO: 2.9%, 90% CI [0.2%, 8.0%]).

5. Discussion

Observational learning (or production imitation) is a time-evolving
process involving a demonstrator (or model), a learner (or observer),
and a target task. In this study, we borrowed the conceptual and ana-
lytical framework of dynamical system theory as applied and developed
in the cognitive sciences (e.g., Coco et al., 2017; Dale, et, al. 2013;
Fusaroli et al., 2014) to investigate the role of attentional coordination
in the ‘passing on’ or re-construction of knowledge. Researchers in di-
verse fields have claimed that learning through observation benefits
from a constant interaction and tight attentional coupling between the
learner and the resources made available by the demonstrator (e.g., M.
Carpenter et al., 1998; Mundy & Newell, 2009; Tomasello, 2009).
However, the experimental support for this claim has lacked both
temporal and spatial resolution – for example, because studies used
manual annotations of gaze directions from video footage (e.g., M.
Carpenter et al., 1998), or used eye-tracking measures that aggregate
data over time, such as number of fixations, which provides little in-
sight about how attention unfolds over time (e.g., Breslin et al., 2009).

In the current study, we combined eye-tracking with sophisticated
computational analyses (RQA and Bayesian hierarchical regression) and
provided evidence that learners better able to coordinate their overt
attention with the manipulative actions of the demonstrator had an
increasingly higher probability of success in solving a construction
puzzle task. Through this dynamical interaction with the demonstrator's
unfolding actions, learners discovered object affordances and the se-
quence of actions required to successfully complete the task more
quickly than if they were learning alone.

In this study, we also investigated how the availability of verbal
instruction and intentional gaze interacts with attentional coordination
and mediate the learning outcomes. Speech and overt attention are
known to synchronise strongly during language comprehension, lan-
guage production, and even dialogue tasks (e.g., Coco & Keller, 2012;
Knoeferle & Crocker, 2006; Richardson et al., 2007). We therefore ex-
pected that the availability of verbal instruction would improve task
performance and be associated with better coordination between overt
attention and manipulative actions. Indeed, we found evidence that
speech helps cognitive processes to align and plays an important role in
the passing on of knowledge, as shown by the stronger improvement of
performance compared to when speech was not available.

The availability of intentional gaze is considered important to build
joint attention (e.g., Tomasello et al., 2005) and we therefore expected
that being able to see the demonstrator's face (as opposed to his blurred
face) would improve the learning outcome of our participants in the
manipulative task. However, we found that the availability of the de-
monstrator's face, and hence of his intentional gaze, were instead det-
rimental to learning. Learners tended to look more often at the de-
monstrator's face when it was visible (compared to blurred) and even
more often when they could also hear him speaking. These bouts of
attention away from the manipulative actions of the demonstrator and
towards his face have likely distracted learners and hence negatively
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impacted on their learning. We note, however, that our study utilises
pre-recorded videos and that, in cases of live interaction, the behaviour
of looking at the partner's eyes is likely to play important roles, such as
to indicate engagement or request the partner's attention, and hence
may be beneficial to learning. Regardless, it is interesting to observe
that learners coordinated their visual attention with the demonstrator's
actions even when his face was blurred. This result is consistent with
the “hand-eye coordination” route to joint attention (Yu & Smith, 2013)
rather than the more widely acknowledged gaze-following route and
suggests that this alternative route may play an important role in the
processes of social learning which has received little attention.

Using pre-recorded demonstrations enabled us to achieve greater
control when measuring the attentional coordination across learners,
because they all watched the same videos. While demonstration videos
are commonly used in studies of observational learning, this is arguably
one of the main limitations of this design. Most cases of observational
learning occur during face-to-face encounters, thus it would be im-
portant to examine demonstrator-learner dyads interacting live using a
similar paradigm. Another important limitation of this study is the re-
latively small number of participants. The novel manipulative task we
conceived was particularly time-consuming, as it not only involved eye-
tracking (while participants watched the demonstrations) but also re-
quired manual performance (to measure success in every trial) and was
iterative (to measure changes in performance across trials, i.e.
learning), requiring a total of 15 trials for each participant. To over-
come the resulting time constraint, we manipulated the experimental
conditions (i.e. type of demonstration video) between participants,
which limited the sample size in each. Even though Bayesian statistics is
more robust in the context of small sample sizes (see Gelman et al.,
2014; van de Schoot et al., 2014), and despite finding systematic dif-
ferences across conditions, the results must be interpreted as ex-
ploratory and might be used as an important foundation for future re-
search interested in similar research questions and deploying a similar
methodology. The results from the current study can constitute a solid
basis for power analyses estimating effect size statistic in designs aimed
at replicating our findings or extending in other ways our innovative
experimental approach.

This study did not seek to address how the ability to identify and
track the relevant aspects of the demonstration develops. Further work
might use a similar paradigm to examine dyads from different age
groups, and we expect that measures of attentional coordination will be
positively correlated with age. In principle, similar methods could be
applied to the study of social learning in nonhuman animals, allowing
researchers to explore whether coordination is central to social learning
more generally, or a species-specific feature of human social learning.

One methodological contribution of our study is to show that the
combination of eye-tracking methods, RQA, and hierarchical modelling,
can provide a powerful tool for examining the mechanisms of ob-
servational learning with finer granularity. Future research could ex-
ploit these methods to further elucidate how and the extent to which
the dynamics of attentional coordination may influence social learning
by looking, for example, at the stability of the attentional coordination,
and the relation between patterns of attentional coordination and
learning trajectories, during iterative observational learning. Novel
extensions of recurrence quantification analysis to multi-dimensional
data might be successfully used to investigate patterns of learning in-
volving larger groups of individuals interacting in real time (see Knight,
Kennedy, & McComb, 2016; Wallot, Roepstorff, & Mønster, 2016 for
recent developments in this direction).

We conclude that viewing social learning from the perspective of
moment-to-moment attentional coordination might provide novel the-
oretical insights to the field, and we hope the present study will moti-
vate further work that embraces the technological and analytical ad-
vances deployed here.
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Appendix A. Data and scripts for analysis

The data, examples of the demonstration videos, R scripts, and an
extensive tutorial on the analyses reported here are available at the OSF
page of this project (https://osf.io/jhtqb/).

Appendix B. Supplementary material

Supplementary material to this article can be found online at
https://doi.org/10.1016/j.cognition.2020.104314.
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